Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma.

Genome research | 2013

Low-grade brain tumors (pilocytic astrocytomas) arising in the neurofibromatosis type 1 (NF1) inherited cancer predisposition syndrome are hypothesized to result from a combination of germline and acquired somatic NF1 tumor suppressor gene mutations. However, genetically engineered mice (GEM) in which mono-allelic germline Nf1 gene loss is coupled with bi-allelic somatic (glial progenitor cell) Nf1 gene inactivation develop brain tumors that do not fully recapitulate the neuropathological features of the human condition. These observations raise the intriguing possibility that, while loss of neurofibromin function is necessary for NF1-associated low-grade astrocytoma development, additional genetic changes may be required for full penetrance of the human brain tumor phenotype. To identify these potential cooperating genetic mutations, we performed whole-genome sequencing (WGS) analysis of three NF1-associated pilocytic astrocytoma (PA) tumors. We found that the mechanism of somatic NF1 loss was different in each tumor (frameshift mutation, loss of heterozygosity, and methylation). In addition, tumor purity analysis revealed that these tumors had a high proportion of stromal cells, such that only 50%-60% of cells in the tumor mass exhibited somatic NF1 loss. Importantly, we identified no additional recurrent pathogenic somatic mutations, supporting a model in which neuroglial progenitor cell NF1 loss is likely sufficient for PA formation in cooperation with a proper stromal environment.

Pubmed ID: 23222849 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R01 CA180006
  • Agency: NCRR NIH HHS, United States
    Id: UL1 RR024992
  • Agency: NCATS NIH HHS, United States
    Id: UL1 TR000448
  • Agency: NCRR NIH HHS, United States
    Id: UL1-RR024992

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BREAKDANCER (tool)

RRID:SCR_001799

A Perl/C++ software package that provides genome-wide detection of structural variants from next generation paired-end sequencing reads. BreakDancerMax predicts five types of structural variants: insertions, deletions, inversions, inter- and intra-chromosomal translocations from next-generation short paired-end sequencing reads using read pairs that are mapped with unexpected separation distances or orientation. (entry from Genetic Analysis Software)

View all literature mentions

PolyPhred (tool)

RRID:SCR_002337

Software program that compares fluorescence-based sequences across traces obtained from different individuals to identify heterozygous sites for single nucleotide substitutions. Its functions are integrated with the use of three other programs: Phred (Brent Ewing and Phil Green), Phrap (Phil Green), and Consed (David Gordon and Phil Green). PolyPhred identifies potential heterozygotes using the base calls and peak information provided by Phred and the sequence alignments provided by Phrap. Potential heterozygotes identified by PolyPhred are marked for rapid inspection using the Consed tool.

View all literature mentions

NCBI database of Genotypes and Phenotypes (dbGap) (tool)

RRID:SCR_002709

Database developed to archive and distribute clinical data and results from studies that have investigated interaction of genotype and phenotype in humans. Database to archive and distribute results of studies including genome-wide association studies, medical sequencing, molecular diagnostic assays, and association between genotype and non-clinical traits.

View all literature mentions

SomaticSniper (tool)

RRID:SCR_005108

Software program to identify single nucleotide positions that are different between tumor and normal (or, in theory, any two bam files). It takes a tumor bam and a normal bam and compares the two to determine the differences. It outputs a file in a format very similar to Samtools consensus format. It uses the genotype likelihood model of MAQ (as implemented in Samtools) and then calculates the probability that the tumor and normal genotypes are different. This probability is reported as a somatic score. The somatic score is the Phred-scaled probability (between 0 to 255) that the Tumor and Normal genotypes are not different where 0 means there is no probability that the genotypes are different and 255 means there is a probability of 1 ? 10(255/-10) that the genotypes are different between tumor and normal. This is consistent with how the SAM format reports such probabilities. It is currently available as source code via github or as a Debian APT package.

View all literature mentions

Consed (tool)

RRID:SCR_005650

A graphical tool for sequence finishing (BAM File Viewer, Assembly Editor, Autofinish, Autoreport, Autoedit, and Align Reads To Reference Sequence)

View all literature mentions

VARSCAN (tool)

RRID:SCR_006849

A platform-independent, technology-independent software tool for identifying SNPs and indels in massively parallel sequencing of individual and pooled samples. Given data for a single sample, VarScan identifies and filters germline variants based on read counts, base quality, and allele frequency. Given data for a tumor-normal pair, VarScan also determines the somatic status of each variant (Germline, Somatic, or LOH) by comparing read counts between samples. (entry from Genetic Analysis Software)

View all literature mentions

Methylumi (tool)

RRID:SCR_012831

Software package that provides classes for holding and manipulating Illumina methylation data.

View all literature mentions