Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cytoskeletal changes during development and aging in the cortex of neurofilament light protein knockout mice.

The Journal of comparative neurology | 2013

The neurofilament light (NFL) subunit is considered as an obligate subunit polymer for neuronal intermediate filaments comprising the neurofilament (NF) triplet proteins. We examined cytoskeletal protein levels in the cerebral cortex of NFL knockout (KO) mice at postnatal day 4 (P4), 5 months, and 12 months of age compared with age-matched wild-type (WT) mice of a similar genetic background (C57BL/6). The absence of NFL protein resulted in a significant reduction of phosphorylated and dephosphorylated NFs (NF-P, NF-DP), the medium NF subunit (NFM), and the intermediate filament α-internexin (INT) at P4. At 5 months, NF-DP, NFM, and INT remained significantly lower in knockouts. At 12 months, NF-P was again significantly decreased, and INT significantly increased, in KOs compared with wild type. In addition, protein levels of class III neuron-specific β-tubulin and microtubule-associated protein 2 were significantly increased in NFL KO mice at P4, 5 months, and 12 months, whereas β-actin levels were significantly decreased at P4. Immunocytochemical studies demonstrated that NF-DP accumulated abnormally in the perikarya of cortical neurons by 5 months of age in NFL KO mice. Neurons that lacked NF triplet proteins, such as calretinin-immunolabeled nonpyramidal cells, showed no alterations in density or cytoarchitectural distribution in NFL KO mice at 5 months relative to WT mice, although calretinin protein levels were decreased significantly after 12 months in NFL KO mice. These findings suggest that a lack of NFL protein alters the expression of cytoskeletal proteins and disrupts other NF subunits, causing intracellular aggregation but not gross structural changes in cortical neurons or cytoarchitecture. The data also indicate that changes in expression of other cytoskeletal proteins may compensate for decreased NFs.

Pubmed ID: 23172043 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.