Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Permeant calcium ion feed-through regulation of single inositol 1,4,5-trisphosphate receptor channel gating.

The Journal of general physiology | 2012

The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) Ca(2+) release channel plays a central role in the generation and modulation of intracellular Ca(2+) signals, and is intricately regulated by multiple mechanisms including cytoplasmic ligand (InsP(3), free Ca(2+), free ATP(4-)) binding, posttranslational modifications, and interactions with cytoplasmic and endoplasmic reticulum (ER) luminal proteins. However, regulation of InsP(3)R channel activity by free Ca(2+) in the ER lumen ([Ca(2+)](ER)) remains poorly understood because of limitations of Ca(2+) flux measurements and imaging techniques. Here, we used nuclear patch-clamp experiments in excised luminal-side-out configuration with perfusion solution exchange to study the effects of [Ca(2+)](ER) on homotetrameric rat type 3 InsP(3)R channel activity. In optimal [Ca(2+)](i) and subsaturating [InsP(3)], jumps of [Ca(2+)](ER) from 70 nM to 300 µM reduced channel activity significantly. This inhibition was abrogated by saturating InsP(3) but restored when [Ca(2+)](ER) was raised to 1.1 mM. In suboptimal [Ca(2+)](i), jumps of [Ca(2+)](ER) (70 nM to 300 µM) enhanced channel activity. Thus, [Ca(2+)](ER) effects on channel activity exhibited a biphasic dependence on [Ca(2+)](i). In addition, the effect of high [Ca(2+)](ER) was attenuated when a voltage was applied to oppose Ca(2+) flux through the channel. These observations can be accounted for by Ca(2+) flux driven through the open InsP(3)R channel by [Ca(2+)](ER), raising local [Ca(2+)](i) around the channel to regulate its activity through its cytoplasmic regulatory Ca(2+)-binding sites. Importantly, [Ca(2+)](ER) regulation of InsP(3)R channel activity depended on cytoplasmic Ca(2+)-buffering conditions: it was more pronounced when [Ca(2+)](i) was weakly buffered but completely abolished in strong Ca(2+)-buffering conditions. With strong cytoplasmic buffering and Ca(2+) flux sufficiently reduced by applied voltage, both activation and inhibition of InsP(3)R channel gating by physiological levels of [Ca(2+)](ER) were completely abolished. Collectively, these results rule out Ca(2+) regulation of channel activity by direct binding to the luminal aspect of the channel.

Pubmed ID: 23148262 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM065830
  • Agency: NIMH NIH HHS, United States
    Id: R01 MH059937
  • Agency: NIGMS NIH HHS, United States
    Id: 5R01 GM065830

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NEURON (tool)

RRID:SCR_005393

NEURON is a simulation environment for modeling individual neurons and networks of neurons. It provides tools for conveniently building, managing, and using models in a way that is numerically sound and computationally efficient. It is particularly well-suited to problems that are closely linked to experimental data, especially those that involve cells with complex anatomical and biophysical properties. NEURON has benefited from judicious revision and selective enhancement, guided by feedback from the growing number of neuroscientists who have used it to incorporate empirically-based modeling into their research strategies. NEURON's computational engine employs special algorithms that achieve high efficiency by exploiting the structure of the equations that describe neuronal properties. It has functions that are tailored for conveniently controlling simulations, and presenting the results of real neurophysiological problems graphically in ways that are quickly and intuitively grasped. Instead of forcing users to reformulate their conceptual models to fit the requirements of a general purpose simulator, NEURON is designed to let them deal directly with familiar neuroscience concepts. Consequently, users can think in terms of the biophysical properties of membrane and cytoplasm, the branched architecture of neurons, and the effects of synaptic communication between cells. * helps users focus on important biological issues rather than purely computational concerns * has a convenient user interface * has a user-extendable library of biophysical mechanisms * has many enhancements for efficient network modeling * offers customizable initialization and simulation flow control * is widely used in neuroscience research by experimentalists and theoreticians * is well-documented and actively supported * is free, open source, and runs on (almost) everything

View all literature mentions