Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Crystal structures of wild-type and mutated cyclophilin B that causes hyperelastosis cutis in the American quarter horse.

BMC research notes | Nov 8, 2012

BACKGROUND: Hyperelastosis cutis is an inherited autosomal recessive connective tissue disorder. Affected horses are characterized by hyperextensible skin, scarring, and severe lesions along the back. The disorder is caused by a mutation in cyclophilin B. RESULTS: The crystal structures of both wild-type and mutated (Gly6->Arg) horse cyclophilin B are presented. The mutation neither affects the overall fold of the enzyme nor impairs the catalytic site structure. Instead, it locally rearranges the flexible N-terminal end of the polypeptide chain and also makes it more rigid. CONCLUSIONS: Interactions of the mutated cyclophilin B with a set of endoplasmic reticulum-resident proteins must be affected.

Pubmed ID: 23137129 RIS Download

Mesh terms: Animals | Crystallography, X-Ray | Cyclophilins | Horse Diseases | Horses | Models, Molecular | Mutation, Missense | Protein Structure, Secondary | Protein Structure, Tertiary | Skin | Skin Diseases

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PyMOL

A user-sponsored molecular visualization software system on an open-source foundation. The software has the capabilities to view, render, animate, export, present and develop three dimensional molecular structures.

tool

View all literature mentions

Coot

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

tool

View all literature mentions

Phenix

A Python-based software suite for the automated determination of molecular structures using X-ray crystallography and other methods. Phenix includes programs for assessing data quality, experimental phasing, molecular replacement, model building, structure refinement, and validation. It also includes tools for reflection data and creating maps and models. Phenix can also be used for neutron crystallography. Tutorials and examples are available in the documentation tab.

tool

View all literature mentions

MolProbity

A structure-validation web application which provides an expert-system consultation about the accuracy of a macromolecular structure model, diagnosing local problems and enabling their correction. MolProbity works best as an active validation tool (used as soon as a model is available and during each rebuild/refine loop) and when used for protein and RNA crystal structures, but it may also work well for DNA, ligands and NMR ensembles. It produces coordinates, graphics, and numerical evaluations that integrate with either manual or automated use in systems such as PHENIX, KiNG, or Coot.

tool

View all literature mentions