• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Effects of the Paf1 complex and histone modifications on snoRNA 3'-end formation reveal broad and locus-specific regulation.

Across diverse eukaryotes, the Paf1 complex (Paf1C) plays critical roles in RNA polymerase II transcription elongation and regulation of histone modifications. Beyond these roles, the human and Saccharomyces cerevisiae Paf1 complexes also interact with RNA 3'-end processing components to affect transcript 3'-end formation. Specifically, the Saccharomyces cerevisiae Paf1C functions with the RNA binding proteins Nrd1 and Nab3 to regulate the termination of at least two small nucleolar RNAs (snoRNAs). To determine how Paf1C-dependent functions regulate snoRNA formation, we used high-density tiling arrays to analyze transcripts in paf1Δ cells and uncover new snoRNA targets of Paf1. Detailed examination of Paf1-regulated snoRNA genes revealed locus-specific requirements for Paf1-dependent posttranslational histone modifications. We also discovered roles for the transcriptional regulators Bur1-Bur2, Rad6, and Set2 in snoRNA 3'-end formation. Surprisingly, at some snoRNAs, this function of Rad6 appears to be primarily independent of its role in histone H2B monoubiquitylation. Cumulatively, our work reveals a broad requirement for the Paf1C in snoRNA 3'-end formation in S. cerevisiae, implicates the participation of transcriptional proteins and histone modifications in this process, and suggests that the Paf1C contributes to the fine tuning of nuanced levels of regulation that exist at individual loci.

Pubmed ID: 23109428


  • Tomson BN
  • Crisucci EM
  • Heisler LE
  • Gebbia M
  • Nislow C
  • Arndt KM


Molecular and cellular biology

Publication Data

January 12, 2013

Associated Grants

  • Agency: NIGMS NIH HHS, Id: F32GM093383
  • Agency: Canadian Institutes of Health Research, Id: MOP-84305
  • Agency: NIGMS NIH HHS, Id: R01-GM52593

Mesh Terms

  • Cell Cycle Proteins
  • Cyclin-Dependent Kinases
  • Cyclins
  • Gene Expression Regulation, Fungal
  • Histones
  • Methyltransferases
  • Mutation
  • Nuclear Proteins
  • Protein Processing, Post-Translational
  • RNA, Small Nucleolar
  • Saccharomyces cerevisiae Proteins
  • TATA-Box Binding Protein
  • Transcriptional Elongation Factors
  • Ubiquitin-Conjugating Enzymes
  • Ubiquitination