Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance.

Cell reports | 2012

The molecular chaperone Hsp90 is a hub of protein homeostasis and regulatory circuitry. Hsp90 function is regulated by posttranslational modifications including acetylation in mammals; however, whether this regulation is conserved remains unknown. In fungi, Hsp90 governs the evolution of drug resistance by stabilizing signal transducers. Here, we establish that pharmacological inhibition of lysine deacetylases (KDACs) blocks the emergence and maintenance of Hsp90-dependent resistance to the most widely deployed antifungals, the azoles, in the human fungal pathogen Candida albicans and the model yeast Saccharomyces cerevisiae. S. cerevisiae Hsp90 is acetylated on lysine 27 and 270, and key KDACs for drug resistance are Hda1 and Rpd3. Compromising KDACs alters stability and function of Hsp90 client proteins, including the drug-resistance regulator calcineurin. Thus, we establish acetylation as a mechanism of posttranslational control of Hsp90 function in fungi, functional redundancy between KDACs Hda1 and Rpd3, as well as a mechanism governing fungal drug resistance with broad therapeutic potential.

Pubmed ID: 23041319 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 096072
  • Agency: Canadian Institutes of Health Research, Canada
    Id: MOP-86452

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Global Proteome Machine Database (GPM DB) (tool)

RRID:SCR_006617

The Global Proteome Machine Organization was set up so that scientists involved in proteomics using tandem mass spectrometry could use that data to analyze proteomes. The projects supported by the GPMO have been selected to improve the quality of analysis, make the results portable and to provide a common platform for testing and validating proteomics results. The Global Proteome Machine Database was constructed to utilize the information obtained by GPM servers to aid in the difficult process of validating peptide MS/MS spectra as well as protein coverage patterns. This database has been integrated into GPM server pages, allowing users to quickly compare their experimental results with the best results that have been previously observed by other scientists.

View all literature mentions

Microsoft Excel (tool)

RRID:SCR_016137

Software application with data analysis tools and spreadsheet templates to track and visualize data. It is used to manage and process data.

View all literature mentions