Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events.

Genome research | 2012

Lung cancer is a highly heterogeneous disease in terms of both underlying genetic lesions and response to therapeutic treatments. We performed deep whole-genome sequencing and transcriptome sequencing on 19 lung cancer cell lines and three lung tumor/normal pairs. Overall, our data show that cell line models exhibit similar mutation spectra to human tumor samples. Smoker and never-smoker cancer samples exhibit distinguishable patterns of mutations. A number of epigenetic regulators, including KDM6A, ASH1L, SMARCA4, and ATAD2, are frequently altered by mutations or copy number changes. A systematic survey of splice-site mutations identified 106 splice site mutations associated with cancer specific aberrant splicing, including mutations in several known cancer-related genes. RAC1b, an isoform of the RAC1 GTPase that includes one additional exon, was found to be preferentially up-regulated in lung cancer. We further show that its expression is significantly associated with sensitivity to a MAP2K (MEK) inhibitor PD-0325901. Taken together, these data present a comprehensive genomic landscape of a large number of lung cancer samples and further demonstrate that cancer-specific alternative splicing is a widespread phenomenon that has potential utility as therapeutic biomarkers. The detailed characterizations of the lung cancer cell lines also provide genomic context to the vast amount of experimental data gathered for these lines over the decades, and represent highly valuable resources for cancer biology.

Pubmed ID: 23033341 RIS Download

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: P50 CA070907
  • Agency: NCI NIH HHS, United States
    Id: U01 CA086402

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Sequencher (tool)

RRID:SCR_001528

Software for Next-Generation DNA sequencing, Sanger DNA analysis, and RNA sequencing. It contains sequence analysis tools which include reference-guided alignments, de novo assembly, variant calling, and SNP analyses. It has integrated the Cufflinks suite for in-depth transcript analysis and differential gene expression of RNA-Seq data.

View all literature mentions

COSMIC - Catalogue Of Somatic Mutations In Cancer (tool)

RRID:SCR_002260

Database to store and display somatic mutation information and related details and contains information relating to human cancers. The mutation data and associated information is extracted from the primary literature. In order to provide a consistent view of the data a histology and tissue ontology has been created and all mutations are mapped to a single version of each gene. The data can be queried by tissue, histology or gene and displayed as a graph, as a table or exported in various formats.
Some key features of COSMIC are:
* Contains information on publications, samples and mutations. Includes samples which have been found to be negative for mutations during screening therefore enabling frequency data to be calculated for mutations in different genes in different cancer types.
* Samples entered include benign neoplasms and other benign proliferations, in situ and invasive tumours, recurrences, metastases and cancer cell lines.

View all literature mentions

Entrez Gene (tool)

RRID:SCR_002473

Database for genomes that have been completely sequenced, have active research community to contribute gene-specific information, or that are scheduled for intense sequence analysis. Includes nomenclature, map location, gene products and their attributes, markers, phenotypes, and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases. All entries follow NCBI's format for data collections. Content of Entrez Gene represents result of curation and automated integration of data from NCBI's Reference Sequence project (RefSeq), from collaborating model organism databases, and from many other databases available from NCBI. Records are assigned unique, stable and tracked integers as identifiers. Content is updated as new information becomes available.

View all literature mentions

NCBI database of Genotypes and Phenotypes (dbGap) (tool)

RRID:SCR_002709

Database developed to archive and distribute clinical data and results from studies that have investigated interaction of genotype and phenotype in humans. Database to archive and distribute results of studies including genome-wide association studies, medical sequencing, molecular diagnostic assays, and association between genotype and non-clinical traits.

View all literature mentions

GSNAP (tool)

RRID:SCR_005483

Software to align single and paired end reads as short as 14 nt and of arbitrarily long length. Can detect short and long distance splicing, including interchromosomal splicing, in individual reads, using probabilistic models or database of known splice sites. Permits SNP-tolerant alignment to reference space of all possible combinations of major and minor alleles, and can align reads from bisulfite-treated DNA for study of methylation state.

View all literature mentions

1000 Genomes: A Deep Catalog of Human Genetic Variation (tool)

RRID:SCR_006828

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

View all literature mentions

DNAcopy (tool)

RRID:SCR_012560

Software that segments DNA copy number data using circular binary segmentation to detect regions with abnormal copy number.

View all literature mentions

NCI-H1299 (tool)

RRID:CVCL_0060

Cell line NCI-H1299 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions