Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The synaptic function of LRRK2.

http://www.ncbi.nlm.nih.gov/pubmed/22988863

Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most frequent genetic lesions so far found in familial as well as sporadic forms of PD (Parkinson's disease), a neurodegenerative disease characterized by the dysfunction and degeneration of dopaminergic and other neuronal types. The molecular and cellular mechanisms underlying LRRK2 action remain poorly defined. Synaptic dysfunction has been increasingly recognized as an early event in the pathogenesis of major neurological disorders. Using Drosophila as a model system, we have shown that LRRK2 controls synaptic morphogenesis. Loss of dLRRK (Drosophila LRRK2) results in synaptic overgrowth at the Drosophila neuromuscular junction synapse, whereas overexpression of wild-type dLRRK, hLRRK2 (human LRRK2) or the pathogenic hLRRK2-G2019S mutant has the opposite effect. Alteration of LRRK2 activity also affects synaptic transmission in a complex manner. LRRK2 exerts its effects on synaptic morphology by interacting with distinct downstream effectors at the pre- and post-synaptic compartments. At the postsynapse, LRRK2 functionally interacts with 4E-BP (eukaryotic initiation factor 4E-binding protein) and the microRNA machinery, both of which negatively regulate protein synthesis. At the presynapse, LRRK2 phosphorylates and negatively regulates the microtubule-binding protein Futsch and functionally interacts with the mitochondrial transport machinery. These results implicate compartment-specific synaptic dysfunction caused by altered protein synthesis, cytoskeletal dynamics and mitochondrial transport in LRRK2 pathogenesis and offer a new paradigm for understanding and ultimately treating LRRK2-related PD.

Pubmed ID: 22988863 RIS Download

Mesh terms: Animals | Drosophila Proteins | Drosophila melanogaster | Humans | Mutation | Parkinson Disease | Phosphorylation | Protein-Serine-Threonine Kinases

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIAMS NIH HHS, Id: R01AR054926
  • Agency: NIMH NIH HHS, Id: R01MH080378

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.