Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

DNA damage-induced activation of ATM promotes β-TRCP-mediated Mdm2 ubiquitination and destruction.

Oncotarget | 2012

The Mdm2 oncoprotein promotes p53 ubiquitination and destruction. Yet, exact molecular mechanisms of Mdm2 destruction itself, under DNA damaging conditions, remain unclear. Recently, we identified SCFβ-TRCP as a novel E3 ligase that targets Mdm2 for ubiquitination and destruction in a Casein Kinase Iδ (CKIδ)-dependent manner. However, it remains elusive how the β-TRCP/CKIδ/Mdm2 signaling axis is regulated by DNA damage signals to govern p53 activity. Consistent with previous studies, we found that inactivation of the Ataxia Telangiectasia Mutated (ATM) kinase, in turn, impaired DNA damage-induced Mdm2 destruction. Although phosphorylation of Mdm2 at Ser395 (an ATM phosphorylation site) facilitated Mdm2 interaction with β-TRCP, Ser395A-Mdm2 was degraded non-distinguishably from WT-Mdm2 by SCFβ-TRCP upon DNA damaging treatments. This indicates that in addition to phosphorylating Mdm2 at Ser395, ATM may govern Mdm2 stability through other unknown mechanisms. We further demonstrated that DNA damage-induced activation of ATM directly phosphorylated CKIδ at two well-conserved S/TQ sites, which promotes CKIδ nuclear localization to increase CKIδ-mediated phosphorylation of Mdm2, thereby facilitating subsequent Mdm2 ubiquitination by SCFβ-TRCP. Our studies provide a molecular mechanism of how ATM could govern DNA damage-induced destruction of Mdm2 in part by phosphorylating both Mdm2 and CKIδ to modulate SCFβ-TRCP-mediated Mdm2 ubiquitination. Given the pivotal role of Mdm2 in the negative regulation of p53, this work will also provide a rationale for developing CKIδ or ATM agonists as anti-cancer agents.

Pubmed ID: 22976441 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: GM094777
  • Agency: NIGMS NIH HHS, United States
    Id: GM089763
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM089763
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM094777
  • Agency: NIA NIH HHS, United States
    Id: K01 AG041218

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Covance (tool)

RRID:SCR_001224

A contract research organization providing drug development and animal testing services. Under the name Covance Research Products Inc., based in Denver, Pennsylvania, the company also deals in the import, breeding and sale of laboratory animals. It breeds dogs, rabbits, guinea pigs, non-human primates, and pigs, and runs the largest non-human primate laboratory in Germany. (Wikipedia)

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions