Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The Mammalian Phenotype Ontology as a unifying standard for experimental and high-throughput phenotyping data.

Mammalian genome : official journal of the International Mammalian Genome Society | 2012

The Mammalian Phenotype Ontology (MP) is a structured vocabulary for describing mammalian phenotypes and serves as a critical tool for efficient annotation and comprehensive retrieval of phenotype data. Importantly, the ontology contains broad and specific terms, facilitating annotation of data from initial observations or screens and detailed data from subsequent experimental research. Using the ontology structure, data are retrieved inclusively, i.e., data annotated to chosen terms and to terms subordinate in the hierarchy. Thus, searching for "abnormal craniofacial morphology" also returns annotations to "megacephaly" and "microcephaly," more specific terms in the hierarchy path. The development and refinement of the MP is ongoing, with new terms and modifications to its organization undergoing continuous assessment as users and expert reviewers propose expansions and revisions. A wealth of phenotype data on mouse mutations and variants annotated to the MP already exists in the Mouse Genome Informatics database. These data, along with data curated to the MP by many mouse mutagenesis programs and mouse repositories, provide a platform for comparative analyses and correlative discoveries. The MP provides a standard underpinning to mouse phenotype descriptions for existing and future experimental and large-scale phenotyping projects. In this review we describe the MP as it presently exists, its application to phenotype annotations, the relationship of the MP to other ontologies, and the integration of the MP within large-scale phenotyping projects. Finally we discuss future application of the MP in providing standard descriptors of the phenotype pipeline test results from the International Mouse Phenotype Consortium projects.

Pubmed ID: 22961259 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Texas A and M Institute for Genomic Medicine (tool)

RRID:SCR_001615

Resource for any researcher looking to obtain knockout mice and embryonic stem (ES) cells quickly and with favorable intellectual property (IP) terms. Our resources include the world’s largest gene trap library of ES cells in the C57BL/6N mouse strain and a constantly expanding repository of cryopreserved germplasm of knockout lines. TIGM provides both ES cell clones and mice as well as other transgenic core services including CRISPR/Cas9-based genome modifications within the Texas A&M system and to the public and private international research community.

View all literature mentions

CHEBI (tool)

RRID:SCR_002088

Collection of chemical compounds and other small molecular entities that incorporates an ontological classification of chemical compounds of biological relevance, whereby the relationships between molecular entities or classes of entities and their parents and/or children are specified. The molecular entities in question are either products of nature or synthetic products used to intervene in the processes of living organisms.

View all literature mentions

Ensembl (tool)

RRID:SCR_002344

Collection of genome databases for vertebrates and other eukaryotic species with DNA and protein sequence search capabilities. Used to automatically annotate genome, integrate this annotation with other available biological data and make data publicly available via web. Ensembl tools include BLAST, BLAT, BioMart and the Variant Effect Predictor (VEP) for all supported species.

View all literature mentions

Zebrafish Information Network (ZFIN) (tool)

RRID:SCR_002560

Model organism database that serves as central repository and web-based resource for zebrafish genetic, genomic, phenotypic and developmental data. Data represented are derived from three primary sources: curation of zebrafish publications, individual research laboratories and collaborations with bioinformatics organizations. Data formats include text, images and graphical representations.Serves as primary community database resource for laboratory use of zebrafish. Developed and supports integrated zebrafish genetic, genomic, developmental and physiological information and link this information extensively to corresponding data in other model organism and human databases.

View all literature mentions

Gene Ontology (tool)

RRID:SCR_002811

Computable knowledge regarding functions of genes and gene products. GO resources include biomedical ontologies that cover molecular domains of all life forms as well as extensive compilations of gene product annotations to these ontologies that provide largely species-neutral, comprehensive statements about what gene products do. Used to standardize representation of gene and gene product attributes across species and databases.

View all literature mentions

Gene Weaver (tool)

RRID:SCR_003009

Freely accessible phenotype-centered database with integrated analysis and visualization tools. It combines diverse data sets from multiple species and experiment types, and allows data sharing across collaborative groups or to public users. It was conceived of as a tool for the integration of biological functions based on the molecular processes that subserved them. From these data, an empirically derived ontology may one day be inferred. Users have found the system valuable for a wide range of applications in the arena of functional genomic data integration.

View all literature mentions

Reactome (tool)

RRID:SCR_003485

Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.

View all literature mentions

SourceForge (tool)

RRID:SCR_004365

Web based service that offers software developers centralized online location to control and manage free and open source software projects. Open source software tool and business public software platform.

View all literature mentions

Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

European Bioinformatics Institute (tool)

RRID:SCR_004727

Non-profit academic organization for research and services in bioinformatics. Provides freely available data from life science experiments, performs basic research in computational biology, and offers user training programme, manages databases of biological data including nucleic acid, protein sequences, and macromolecular structures. Part of EMBL.

View all literature mentions

International Knockout Mouse Consortium (tool)

RRID:SCR_005574

Database of the international consortium working together to mutate all protein-coding genes in the mouse using a combination of gene trapping and gene targeting in C57BL/6 mouse embryonic stem (ES) cells. Detailed information on targeted genes is available. The IKMC includes the following programs: * Knockout Mouse Project (KOMP) (USA) ** CSD, a collaborative team at the Children''''s Hospital Oakland Research Institute (CHORI), the Wellcome Trust Sanger Institute and the University of California at Davis School of Veterinary Medicine , led by Pieter deJong, Ph.D., CHORI, along with K. C. Kent Lloyd, D.V.M., Ph.D., UC Davis; and Allan Bradley, Ph.D. FRS, and William Skarnes, Ph.D., at the Wellcome Trust Sanger Institute. ** Regeneron, a team at the VelociGene division of Regeneron Pharmaceuticals, Inc., led by David Valenzuela, Ph.D. and George D. Yancopoulos, M.D., Ph.D. * European Conditional Mouse Mutagenesis Program (EUCOMM) (Europe) * North American Conditional Mouse Mutagenesis Project (NorCOMM) (Canada) * Texas A&M Institute for Genomic Medicine (TIGM) (USA) Products (vectors, mice, ES cell lines) may be ordered from the above programs.

View all literature mentions

UCSC Genome Browser (tool)

RRID:SCR_005780

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

View all literature mentions

Google Code (tool)

RRID:SCR_005786

Developer tools, APIs and resources. Search developers.google.com and code.google.com.

View all literature mentions

Human Phenotype Ontology (tool)

RRID:SCR_006016

Provides standardized vocabulary of phenotypic abnormalities encountered in human disease. Structured and controlled vocabulary for phenotypic features encountered in human hereditary and other disease. HPO is being developed in collaboration with members of OBO Foundry (Open Biological and Biomedical Ontologies), and logical definitions for HPO terms are being developed using PATO and a number of other ontologies including FMA, GO, ChEBI, and MPATH.

View all literature mentions

International Mouse Phenotyping Consortium (IMPC) (tool)

RRID:SCR_006158

Center that produces knockout mice and carries out high-throughput phenotyping of each line in order to determine function of every gene in mouse genome. These mice will be preserved in repositories and made available to scientific community representing valuable resource for basic scientific research as well as generating new models for human diseases.

View all literature mentions

phenomeNET (tool)

RRID:SCR_006165

PhenomeNet is a cross-species phenotype similarity network. It contains the experimentally observed phenotypes of multiple species as well as the phenotypes of human diseases. PhenomeNet provides a measure of phenotypic similarity between the phenotypes it contains. The latest release (from 22 June 2012) contains 124,730 complex phenotype nodes taken from the yeast, fish, worm, fly, rat, slime mold and mouse model organism databases as well as human disease phenotypes from OMIM and OrphaNet. The network is a complete graph in which edge weights represent the degree of phenotypic similarity. Phenotypic similarity can be used to identify and prioritize candidate disease genes, find genes participating in the same pathway and orthologous genes between species. To compute phenotypic similarity between two sets of phenotypes, we use a weighted Jaccard index. First, phenotype ontologies are used to infer all the implications of a phenotype observation using several phenotype ontologies. As a second step, the information content of each phenotype is computed and used as a weight in the Jaccard index. Phenotypic similarity is useful in several ways. Phenotypic similarity between a phenotype resulting from a genetic mutation and a disease can be used to suggest candidate genes for a disease. Phenotypic similarity can also identify genes in a same pathway or orthologous genes. PhenomeNet uses the axioms in multiple species-dependent phenotype ontologies to infer equivalent and related phenotypes across species. For this purpose, phenotype ontologies and phenotype annotations are integrated in a single ontology, and automated reasoning is used to infer equivalences. Specifically, for every phenotype, PhenomeNet infers the related mammalian phenotype and uses the Mammalian Phenotype Ontology for computing phenotypic similarity. Tools: * PhenomeBLAST - A tool for cross-species alignments of phenotypes * PhenomeDrug - method for drug-repurposing

View all literature mentions

Sanger Mouse Resources Portal (tool)

RRID:SCR_006239

Database of mouse research resources at Sanger: BACs, targeting vectors, targeted ES cells, mutant mouse lines, and phenotypic data generated from the Institute''''s primary screen. The Wellcome Trust Sanger Institute generates, characterizes, and uses a variety of reagents for mouse genetics research. It also aims to facilitate the distribution of these resources to the external scientific community. Here, you will find unified access to the different resources available from the Institute or its collaborators. The resources include: 129S7 and C57BL6/J bacterial artificial chromosomes (BACs), MICER gene targeting vectors, knock-out first conditional-ready gene targeting vectors, embryonic stem (ES) cells with gene targeted mutations or with retroviral gene trap insertions, mutant mouse lines, and phenotypic data generated from the Institute''''s primary screen.

View all literature mentions

MouseBook (tool)

RRID:SCR_006358

Databases and portal to data and ordering mouse strains from MRC Harwell including mouse stocks in FESA (Frozen Embryo and Sperm Archive), mutants from the mutagenesis screen, the ENU DNA archive, standardized phenotyping procedures, imprinting genes and chromosome anomalies. The portal integrates curated information from the MRC Harwell stock resource, and other Harwell databases, with information from external data resources to provide added value information above and beyond what is available through other routes such as IMSR (International Mouse Stain Resource). MouseBook can be searched either using an intuitive Google-style free text search or using the Mammalian Phenotype Ontology (MP) tree structure. Text searches can be on gene, allele, strain identifier (e.g. MGI ID) or phenotype term and are assisted by automatic recognition of term types and autocompletion of gene and allele names covered by the database. Results are returned in a tabbed format providing categorized results identified from each of the catalogs in MouseBook. Individual results lines from each catalog include information on gene, allele, chromosomal location and phenotype and provide a simple click-through link to further information as well as ordering the strain. The infrastructure underlying MouseBook has been designed to be extensible, allowing additional data sources to be added enabling other sites to make their data directly available through MouseBook.

View all literature mentions

OMIM (tool)

RRID:SCR_006437

Online catalog of human genes and genetic disorders, for clinical features, phenotypes and genes. Collection of human genes and genetic phenotypes, focusing on relationship between phenotype and genotype. Referenced overviews in OMIM contain information on all known mendelian disorders and variety of related genes. It is updated daily, and entries contain copious links to other genetics resources.

View all literature mentions

Rat Genome Database (RGD) (tool)

RRID:SCR_006444

Database for genetic, genomic, phenotype, and disease data generated from rat research. Centralized database that collects, manages, and distributes data generated from rat genetic and genomic research and makes these data available to scientific community. Curation of mapped positions for quantitative trait loci, known mutations and other phenotypic data is provided. Facilitates investigators research efforts by providing tools to search, mine, and analyze this data. Strain reports include description of strain origin, disease, phenotype, genetics, immunology, behavior with links to related genes, QTLs, sub-strains, and strain sources.

View all literature mentions

NCBI (tool)

RRID:SCR_006472

A portal to biomedical and genomic information. NCBI creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and disseminates biomedical information for the better understanding of molecular processes affecting human health and disease.

View all literature mentions

FlyBase (tool)

RRID:SCR_006549

Database of Drosophila genetic and genomic information with information about stock collections and fly genetic tools. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. Additionally, FlyBase accepts data submissions. FlyBase can be searched for genes, alleles, aberrations and other genetic objects, phenotypes, sequences, stocks, images and movies, controlled terms, and Drosophila researchers using the tools available from the "Tools" drop-down menu in the Navigation bar.

View all literature mentions

Europhenome Mouse Phenotyping Resource (tool)

RRID:SCR_006935

Open source software system for capturing, storing and analyzing raw phenotyping data from SOPs contained in EMPReSS, it provides access to raw and annotated mouse phenotyping data generated from primary pipelines such as EMPReSSlim and secondary procedures from specialist centers. Mutants of interest can be identified by searching the gene or the predicted phenotype. You can also access phenotype data from the EMPReSSlim Pipeline for inbred mouse strains. Initially EuroPhenome was developed within the EUMORPHIA programme to capture and store pilot phenotyping data obtained on four background strains (C57BL/6J, C3H/HeBFeJ, BALB/cByJ and 129/SvPas). EUMORPHIA (European Union Mouse Research for Public Health and Industrial Applications) was a large project comprising of 18 research centers in 8 European countries, with the main focus of the project being the development of novel approaches in phenotyping, mutagenesis and informatics to improve the characterization of mouse models for understanding human molecular physiology and pathology. The current version of EuroPhenome is capturing data from the EUMODIC project as well as the WTSI MGP, HMGU GMC pipeline and the CMHD. EUMODIC is undertaking a primary phenotype assessment of up to 500 mouse mutant lines derived from ES cells developed in the EUCOMM project as well as other lines. Lines showing an interesting phenotype will be subject to a more in depth assessment. EUMODIC is building upon the comprehensive database of standardized phenotyping protocols, called EMPReSS, developed by the EUMORPHIA project. EUMODIC has developed a selection of these screens, called EMPReSSslim, to enable comprehensive, high throughput, primary phenotyping of large numbers of mice. Phenovariants are annotated using a automated pipeline, which assigns a MP term if the mutant data is statistically different to the baseline data. This data is shown in the Phenomap and the mine for a mutant tool. Please note that a statistically significant result and the subsequent MP annotation does not necessarily mean a true phenovariant. There are other factors that could cause this result that have not been accounted for in the analysis. It is the responsibility of the user to download the data and use their expert knowledge or further analysis to decide whether they agree or not. EuroPhenome is primarily based in the bioinformatics group at MRC Harwell. The development of EuroPhenome is in collaboration with the Helmholtz Zentrum Munchen, Germany, the Wellcome Trust Sanger Institute, UK and the Institut Clinique de la Souris, France.

View all literature mentions

UBERON (tool)

RRID:SCR_010668

An integrated cross-species anatomy ontology representing a variety of entities classified according to traditional anatomical criteria such as structure, function and developmental lineage. The ontology includes comprehensive relationships to taxon-specific anatomical ontologies, allowing integration of functional, phenotype and expression data. Uberon consists of over 10000 classes (March 2014) representing structures that are shared across a variety of metazoans. The majority of these classes are chordate specific, and there is large bias towards model organisms and human.

View all literature mentions

National Library of Medicine (tool)

RRID:SCR_011446

NLM collects, organizes, and makes available biomedical science information to scientists, health professionals, and the public. The Library's Web-based databases, including PubMed/Medline and MedlinePlus, are used extensively around the world. NLM conducts and supports research in biomedical communications; creates information resources for molecular biology, biotechnology, toxicology, and environmental health; and provides grant and contract support for training, medical library resources, and biomedical informatics and communications research. Celebrating its 175th anniversary in 2011, the National Library of Medicine (NLM), in Bethesda, Maryland, is a part of the National Institutes of Health, U.S. Department of Health and Human Services (HHS). Since its founding in 1836 as the library of the U.S. Army Surgeon General, NLM has played a pivotal role in translating biomedical research into practice. It is the world's largest biomedical library and the developer of electronic information services that deliver trillions of bytes of data to millions of users every day. Scientists, health professionals, and the public in the United States and around the globe search the Library's online information resources more than 1 billion times each year. The Library is open to all and has many services and resources for scientists, health professionals, historians, and the general public. NLM has over 17 million books, journals, manuscripts, audiovisuals, and other forms of medical information on its shelves, making it the largest health-science library in the world. In today's increasingly digital world, NLM carries out its mission of enabling biomedical research, supporting health care and public health, and promoting healthy behavior by: * Acquiring, organizing, and preserving the world's scholarly biomedical literature; * Providing access to biomedical and health information across the country in partnership with the 5,800-member National Network of Libraries of Medicine (NN/LM); * Serving as a leading global resource for building, curating and providing sophisticated access to molecular biology and genomic information, including those from the Human Genome Project and NIH Common Fund; * Creating high-quality information services relevant to toxicology and environmental health, health services research, and public health; * Conducting research and development on biomedical communications systems, methods, technologies, and networks and information dissemination and utilization among health professionals, patients, and the general public; * Funding advanced biomedical informatics research and serving as the primary supporter of pre- and post-doctoral research training in biomedical informatics at 18 U.S. universities.

View all literature mentions

Mouse Genome Database (tool)

RRID:SCR_012953

Community model organism database for laboratory mouse and authoritative source for phenotype and functional annotations of mouse genes. MGD includes complete catalog of mouse genes and genome features with integrated access to genetic, genomic and phenotypic information, all serving to further the use of the mouse as a model system for studying human biology and disease. MGD is a major component of the Mouse Genome Informatics.Contains standardized descriptions of mouse phenotypes, associations between mouse models and human genetic diseases, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information. Data are obtained and integrated via manual curation of the biomedical literature, direct contributions from individual investigators and downloads from major informatics resource centers. MGD collaborates with the bioinformatics community on the development and use of biomedical ontologies such as the Gene Ontology (GO) and the Mammalian Phenotype (MP) Ontology.

View all literature mentions

PhenomicDB (tool)

RRID:SCR_013051

PhenomicDB is a multi-organism phenotype-genotype database including human, mouse, fruit fly, C.elegans, and other model organisms. The inclusion of gene indices (NCBI Gene) and orthologs (same gene in different organisms) from HomoloGene allows to compare phenotypes of a given gene over many organisms simultaneously. PhenomicDB contains data from publicly available primary databases: FlyBase, Flyrnai.org, WormBase, Phenobank, CYGD, MatDB, OMIM, MGI, ZFIN, SGD, DictyBase, NCBI Gene, and HomoloGene. We brought this wealth of data into a single integrated resource by coarse-grained semantic mapping of the phenotypic data fields, by including common gene indexes (NCBI Gene), and by the use of associated orthology relationships (HomoloGene). PhenomicDB is thought as a first step towards comparative phenomics and will improve the understanding of the gene functions by combining the knowledge about phenotypes from several organisms. It is not intended to compete with the much more dedicated primary source databases but tries to compensate its partial loss of depth by linking back to the primary sources. The basic functional concept of PhenomicDB is an integrated meta-search-engine for phenotypes. Users should be aware that comparison of genotypes or even phenotypes between organisms as different as yeast and man can have serious scientific hurdles. Nevertheless finding that the phenotype of a given mouse gene is described as ��similar to psoriasis�� and at the same time that the human ortholog has been described as a gene causing skin defects can lead to novelty and interesting hypotheses. Similarly, a gene involved in cancer in mammalian organisms could show a proliferation phenotype in a lower organism such as yeast and thus, give further insights to a researcher.

View all literature mentions

Mutant Mouse Resource and Research Center (biomaterial supply resource)

RRID:SCR_002953

National public repository system for mutant mice. Archives and distributes scientifically valuable spontaneous and induced mutant mouse strains and ES cell lines for use by biomedical research community. Includes breeding/distribution facilities and information coordinating center. Mice strains are cryopreserved, unless live colony must be established. Live mice are supplied from production colony, from colony recovered from cryopreservation, or via micro-injection of cell line into host blastocysts. MMRRC member facilities also develop technologies to improve handling of mutant mice, including advances in assisted reproductive techniques, cryobiology, genetic analysis, phenotyping and infectious disease diagnostics.

View all literature mentions