Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Concentric zones for pheromone components in the mushroom body calyx of the moth brain.

The Journal of comparative neurology | 2013

The spatial distribution of input and output neurons in the mushroom body (MB) calyx was investigated in the silkmoth Bombyx mori. In Lepidoptera, the brain has a specialized system for processing sex pheromones. How individual pheromone components are represented in the MB has not yet been elucidated. Toward this end, we first compared the distribution of the presynaptic boutons of antennal lobe projection neurons (PNs), which transfer odor information from the antennal lobe to the MB calyx. The axons of PNs that innervate pheromonal glomeruli were confined to a relatively small area within the calyx. In contrast, the axons of PNs that innervate nonpheromonal glomeruli were more widely distributed. PN axons for the minor pheromone component covered a larger area than those for the major pheromone component and partially overlapped with those innervating nonpheromonal glomeruli, suggesting the integration of the minor pheromone component with plant odors. Overall, we found that PN axons innervating pheromonal and nonpheromonal glomeruli were organized into concentric zones. We then analyzed the dendritic fields of Kenyon cells (KCs), which receive inputs from PNs. Despite the strong regional localization of axons of different PN classes, the dendrites of KCs were less well classified. Finally, we estimated the connectivity between PNs and KCs and suggest that the dendritic field may be organized to receive different amounts of pheromonal and nonpheromonal inputs. PNs for multiple pheromone components and plant odors enter the calyx in a concentric fashion, and they are read out by the elaborate dendritic field of KCs.

Pubmed ID: 22911613 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Antibodies used in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.