Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation.

Disease models & mechanisms | 2013

Individuals with congenital disorders of glycosylation (CDG) have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO), which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI) enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf), which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy and the broader molecular and developmental abnormalities that contribute to disorders associated with defective protein glycosylation.

Pubmed ID: 22899857 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R56 GM038545
  • Agency: NIGMS NIH HHS, United States
    Id: GM38545
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM086524
  • Agency: NIGMS NIH HHS, United States
    Id: R01-GM-086524
  • Agency: NIAAA NIH HHS, United States
    Id: R01AA018886
  • Agency: NIAAA NIH HHS, United States
    Id: R01 AA018886
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM038545
  • Agency: NICHD NIH HHS, United States
    Id: RC1 HD064159
  • Agency: NICHD NIH HHS, United States
    Id: K12 HD052890-0510

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Zebrafish Information Network (ZFIN) (tool)

RRID:SCR_002560

Model organism database that serves as central repository and web-based resource for zebrafish genetic, genomic, phenotypic and developmental data. Data represented are derived from three primary sources: curation of zebrafish publications, individual research laboratories and collaborations with bioinformatics organizations. Data formats include text, images and graphical representations.Serves as primary community database resource for laboratory use of zebrafish. Developed and supports integrated zebrafish genetic, genomic, developmental and physiological information and link this information extensively to corresponding data in other model organism and human databases.

View all literature mentions