• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

C16orf57, a gene mutated in poikiloderma with neutropenia, encodes a putative phosphodiesterase responsible for the U6 snRNA 3' end modification.

C16orf57 encodes a human protein of unknown function, and mutations in the gene occur in poikiloderma with neutropenia (PN), which is a rare, autosomal recessive disease. Interestingly, mutations in C16orf57 were also observed among patients diagnosed with Rothmund-Thomson syndrome (RTS) and dyskeratosis congenita (DC), which are caused by mutations in genes involved in DNA repair and telomere maintenance. A genetic screen in Saccharomyces cerevisiae revealed that the yeast ortholog of C16orf57, USB1 (YLR132C), is essential for U6 small nuclear RNA (snRNA) biogenesis and cell viability. Usb1 depletion destabilized U6 snRNA, leading to splicing defects and cell growth defects, which was suppressed by the presence of multiple copies of the U6 snRNA gene SNR6. Moreover, Usb1 is essential for the generation of a unique feature of U6 snRNA; namely, the 3'-terminal phosphate. RNAi experiments in human cells followed by biochemical and functional analyses confirmed that, similar to yeast, C16orf57 encodes a protein involved in the 2',3'-cyclic phosphate formation at the 3' end of U6 snRNA. Advanced bioinformatics predicted that C16orf57 encodes a phosphodiesterase whose putative catalytic activity is essential for its function in vivo. Our results predict an unexpected molecular basis for PN, DC, and RTS and provide insight into U6 snRNA 3' end formation.

Pubmed ID: 22899009

Authors

  • Mroczek S
  • Krwawicz J
  • Kutner J
  • Lazniewski M
  • KuciƄski I
  • Ginalski K
  • Dziembowski A

Journal

Genes & development

Publication Data

September 1, 2012

Associated Grants

None

Mesh Terms

  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Mitochondrial Proteins
  • Models, Molecular
  • Mutation
  • Neutropenia
  • Phosphoric Diester Hydrolases
  • Protein Structure, Tertiary
  • RNA 3' End Processing
  • RNA Interference
  • RNA Stability
  • RNA, Small Nuclear
  • Rothmund-Thomson Syndrome
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins