Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

5-hydroxytryptamine 2C receptors tonically augment synaptic currents in the nucleus tractus solitarii.

The nucleus tractus solitarii (nTS) is the primary termination and integration point for visceral afferents in the brain stem. Afferent glutamate release and its efficacy on postsynaptic activity within this nucleus are modulated by additional neuromodulators and transmitters, including serotonin (5-HT) acting through its receptors. The 5-HT(2) receptors in the medulla modulate the cardiorespiratory system and autonomic reflexes, but the distribution of the 5-HT(2C) receptor and the role of these receptors during synaptic transmission in the nTS remain largely unknown. In the present study, we examined the distribution of 5-HT(2C) receptors in the nTS and their role in modulating excitatory postsynaptic currents (EPSCs) in monosynaptic nTS neurons in the horizontal brain stem slice. Real-time RT-PCR and immunohistochemistry identified 5-HT(2C) receptor message and protein in the nTS and suggested postsynaptic localization. In nTS neurons innervated by general visceral afferents, 5-HT(2C) receptor activation increased solitary tract (TS)-EPSC amplitude and input resistance and depolarized membrane potential. Conversely, 5-HT(2C) receptor blockade reduced TS-EPSC and miniature EPSC amplitude, as well as input resistance, and hyperpolarized membrane potential. Synaptic parameters in nTS neurons that receive sensory input from carotid body chemoafferents were also attenuated by 5-HT(2C) receptor blockade. Taken together, these data suggest that 5-HT(2C) receptors in the nTS are located postsynaptically and augment excitatory neurotransmission.

Pubmed ID: 22855775 RIS Download

Mesh terms: Afferent Pathways | Animals | Excitatory Postsynaptic Potentials | Male | Neurons | Rats | Rats, Sprague-Dawley | Receptor, Serotonin, 5-HT2C | Serotonin 5-HT2 Receptor Antagonists | Solitary Nucleus | Synapses

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.