Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Sample size estimates for well-powered cross-sectional cortical thickness studies.

Human brain mapping | Nov 23, 2013

http://www.ncbi.nlm.nih.gov/pubmed/22807270

INTRODUCTION: Cortical thickness mapping is a widely used method for the analysis of neuroanatomical differences between subject groups. We applied power analysis methods over a range of image processing parameters to derive a model that allows researchers to calculate the number of subjects required to ensure a well-powered cross-sectional cortical thickness study. METHODS: 0.9-mm isotropic T1 -weighted 3D MPRAGE MRI scans from 98 controls (53 females, age 29.1 ± 9.7 years) were processed using Freesurfer 5.0. Power analyses were carried out using vertex-wise variance estimates from the coregistered cortical thickness maps, systematically varying processing parameters. A genetic programming approach was used to derive a model describing the relationship between sample size and processing parameters. The model was validated on four Alzheimer's Disease Neuroimaging Initiative control datasets (mean 126.5 subjects/site, age 76.6 ± 5.0 years). RESULTS: Approximately 50 subjects per group are required to detect a 0.25-mm thickness difference; less than 10 subjects per group are required for differences of 1 mm (two-sided test, 10 mm smoothing, α = 0.05). Sample size estimates were heterogeneous over the cortical surface. The model yielded sample size predictions within 2-6% of that determined experimentally using independent data from four other datasets. Fitting parameters of the model to data from each site reduced the estimation error to less than 2%. CONCLUSIONS: The derived model provides a simple tool for researchers to calculate how many subjects should be included in a well-powered cortical thickness analysis.

Pubmed ID: 22807270 RIS Download

Mesh terms: Adult | Anatomy, Cross-Sectional | Brain Mapping | Cerebral Cortex | Cohort Studies | Data Interpretation, Statistical | Female | Genetic Processes | Humans | Image Processing, Computer-Assisted | Magnetic Resonance Imaging | Male | Models, Neurological | Reproducibility of Results | Sample Size | Young Adult