Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Ultrafast clustering algorithms for metagenomic sequence analysis.

http://www.ncbi.nlm.nih.gov/pubmed/22772836

The rapid advances of high-throughput sequencing technologies dramatically prompted metagenomic studies of microbial communities that exist at various environments. Fundamental questions in metagenomics include the identities, composition and dynamics of microbial populations and their functions and interactions. However, the massive quantity and the comprehensive complexity of these sequence data pose tremendous challenges in data analysis. These challenges include but are not limited to ever-increasing computational demand, biased sequence sampling, sequence errors, sequence artifacts and novel sequences. Sequence clustering methods can directly answer many of the fundamental questions by grouping similar sequences into families. In addition, clustering analysis also addresses the challenges in metagenomics. Thus, a large redundant data set can be represented with a small non-redundant set, where each cluster can be represented by a single entry or a consensus. Artifacts can be rapidly detected through clustering. Errors can be identified, filtered or corrected by using consensus from sequences within clusters.

Pubmed ID: 22772836 RIS Download

Mesh terms: Algorithms | Cluster Analysis | Metagenome | Metagenomics | Sequence Analysis, DNA