Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Tumor suppressive microRNA‑138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma.

International journal of oncology | 2012

Many studies have recently suggested that microRNAs (miRNAs) contribute to the development of various types of human cancers as well as to their invasive and metastatic capacities. Previously, our miRNA expression signature of renal cell carcinoma (RCC) revealed that microRNA‑138 (miR‑138) was significantly reduced in cancer cells. The aim of the present study was to investigate the functional significance of miR‑138 and to identify its target genes in RCC cells. Restoration of mature miR‑138 in two RCC cell lines (A498 and 786‑O) caused changes in the bleb-like cell morphology, characteristics of the epithelial-mesenchymal transition (EMT). Restoration also significantly inhibited migration and invasion in the two RCC cell lines, suggesting that miR‑138 functions as a tumor suppressor. Genome-wide gene expression analysis (miR‑138 transfectants and RCC clinical specimens) and TargetScan database studies showed that vimentin (VIM) is a promising candidate target gene of miR‑138. It is well known that VIM is one of the most widely expressed mammalian intermediate filament proteins. Recent studies showed that VIM functions in cell adhesion, migration, survival and cell signaling processes via dynamic assembly/disassembly in cancer cells. We focused on VIM and investigated whether VIM was regulated by tumor suppressive miR‑138 and contributed to cancer cell migration and invasion in RCC cells. Restoration of miR‑138 in RCC cell lines suppressed VIM expression at both the mRNA and protein levels. Silencing studies of VIM in RCC cell lines demonstrated significant inhibition of cell migration and invasion activities in si-VIM transfectants. In clinical specimens of RCC, the expression levels of VIM were significantly upregulated in cancer tissues compared to adjacent non-cancerous tissues. Furthermore, immunohistochemistry showed that VIM expression levels in RCC specimens were significantly higher than those in normal renal tissues. These data suggest that VIM may function as an oncogene and is regulated by tumor suppressive miR‑138. The existence of a tumor suppressive miR‑138-mediated oncogenic pathway provides new insights into the potential mechanisms of RCC oncogenesis and metastasis.

Pubmed ID: 22766839 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ImageJ (tool)

RRID:SCR_003070

Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

View all literature mentions

786-O (tool)

RRID:CVCL_1051

Cell line 786-O is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

A-498 (tool)

RRID:CVCL_1056

Cell line A-498 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions