Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Differential recognition of a dileucine-based sorting signal by AP-1 and AP-3 reveals a requirement for both BLOC-1 and AP-3 in delivery of OCA2 to melanosomes.

Molecular biology of the cell | 2012

Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to melanosomes are not clear. Here we exploit targeted mutagenesis of the acidic dileucine-based sorting signal in the pigment cell-specific protein OCA2 to dissect the relative roles of AP-1 and AP-3 in transport to melanosomes. We show that binding to AP-1 or AP-3 depends on the primary sequence of the signal and not its position within the cytoplasmic domain. Mutants that preferentially bound either AP-1 or AP-3 each trafficked toward melanosomes and functionally complemented OCA2 deficiency, but AP-3 binding was necessary for steady-state melanosome localization. Unlike tyrosinase, which also engages AP-3 for optimal melanosomal delivery, both AP-1- and AP-3-favoring OCA2 variants required BLOC-1 for melanosomal transport. These data provide evidence for distinct roles of AP-1 and AP-3 in OCA2 transport to melanosomes and indicate that BLOC-1 can cooperate with either adaptor during cargo sorting to LROs.

Pubmed ID: 22718909 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Wellcome Trust, United Kingdom
    Id: 078327
  • Agency: NIAMS NIH HHS, United States
    Id: F32 AR062476
  • Agency: NIGMS NIH HHS, United States
    Id: T32 GM007229
  • Agency: NEI NIH HHS, United States
    Id: R01 EY015625
  • Agency: Intramural NIH HHS, United States
  • Agency: NIGMS NIH HHS, United States
    Id: K12 GM081259
  • Agency: NHLBI NIH HHS, United States
    Id: T32 HL007971

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Clontech (tool)

RRID:SCR_004423

An Antibody supplier

View all literature mentions

Openlab (tool)

RRID:SCR_012158

A software package for performing 2D microscope image processing and integrating and controlling a diverse array of instrumentation in a laboratory environment. The software suite has four basic areas of operation acquisition, image presentation, and storage, analysis, and automation.

View all literature mentions

ImageQuant (tool)

RRID:SCR_014246

Software for automatic general image analysis. It provides fully automatic analysis of 1-D gels including lane creation, background subtraction, band detection, molecular weight calibration, quantity calibration, and normalization. Editing tools are provided for cropping, rotating, and filtering images.

View all literature mentions