Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Postnatal development of brain-derived neurotrophic factor (BDNF) and tyrosine protein kinase B (TrkB) receptor immunoreactivity in multiple brain stem respiratory-related nuclei of the rat.

Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12-13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmission, and BDNF is essential for respiratory development. We hypothesized that the excitation-inhibition imbalance during the critical period stemmed from a reduced expression of BDNF and TrkB at that time within respiratory-related nuclei of the brain stem. An in-depth, semiquantitative immunohistochemical study was undertaken in seven respiratory-related brain stem nuclei and one nonrespiratory nucleus in P0-21 rats. The results indicate that the expressions of BDNF and TrkB: 1) in the pre-Bötzinger complex, nucleus ambiguus, commissural and ventrolateral subnuclei of solitary tract nucleus, and retrotrapezoid nucleus/parafacial respiratory group were significantly reduced at P12, but returned to P11 levels by P14; 2) in the lateral paragigantocellular nucleus and parapyramidal region were increased from P0 to P7, but were strikingly reduced at P10 and plateaued thereafter; and 3) in the nonrespiratory cuneate nucleus showed a gentle plateau throughout the first 3 postnatal weeks, with only a slight decline of BDNF expression after P11. Thus, the significant downregulation of both BDNF and TrkB in respiratory-related nuclei during the critical period may form the basis of, or at least contribute to, the inhibitory-excitatory imbalance within the respiratory network during this time.

Pubmed ID: 22678720


  • Liu Q
  • Wong-Riley MT


The Journal of comparative neurology

Publication Data

January 1, 2013

Associated Grants

  • Agency: NICHD NIH HHS, Id: R01 HD048954
  • Agency: NICHD NIH HHS, Id: R01 HD048954

Mesh Terms

  • Age Factors
  • Animals
  • Animals, Newborn
  • Brain-Derived Neurotrophic Factor
  • Densitometry
  • Female
  • Gene Expression Regulation, Developmental
  • Male
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, trkB
  • Respiratory Center