Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species.

PloS one | Jun 7, 2012

The ability to efficiently and accurately determine genotypes is a keystone technology in modern genetics, crucial to studies ranging from clinical diagnostics, to genotype-phenotype association, to reconstruction of ancestry and the detection of selection. To date, high capacity, low cost genotyping has been largely achieved via "SNP chip" microarray-based platforms which require substantial prior knowledge of both genome sequence and variability, and once designed are suitable only for those targeted variable nucleotide sites. This method introduces substantial ascertainment bias and inherently precludes detection of rare or population-specific variants, a major source of information for both population history and genotype-phenotype association. Recent developments in reduced-representation genome sequencing experiments on massively parallel sequencers (commonly referred to as RAD-tag or RADseq) have brought direct sequencing to the problem of population genotyping, but increased cost and procedural and analytical complexity have limited their widespread adoption. Here, we describe a complete laboratory protocol, including a custom combinatorial indexing method, and accompanying software tools to facilitate genotyping across large numbers (hundreds or more) of individuals for a range of markers (hundreds to hundreds of thousands). Our method requires no prior genomic knowledge and achieves per-site and per-individual costs below that of current SNP chip technology, while requiring similar hands-on time investment, comparable amounts of input DNA, and downstream analysis times on the order of hours. Finally, we provide empirical results from the application of this method to both genotyping in a laboratory cross and in wild populations. Because of its flexibility, this modified RADseq approach promises to be applicable to a diversity of biological questions in a wide range of organisms.

Pubmed ID: 22675423 RIS Download

Mesh terms: Animals | Animals, Outbred Strains | DNA Restriction Enzymes | Genome | Genotype | Polymorphism, Single Nucleotide | Reproducibility of Results | Rodentia | Sequence Analysis, DNA

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GitHub

A web-based hosting service for software development projects that use the Git revision control system offering powerful collaboration, code review, and code management. It offers both paid plans for private repositories, and free accounts for open source projects. Large or small, every repository comes with the same powerful tools. These tools are open to the community for public projects and secure for private projects. Features include: * Integrated issue tracking * Collaborative code review * Easily manage teams within organizations * Text entry with understated power * A growing list of programming languages and data formats * On the desktop and in your pocket - Android app and mobile web views let you keep track of your projects on the go.

tool

View all literature mentions

BLAT

Software designed to quickly find sequences of 95% and greater similarity of length 25 bases or more.

tool

View all literature mentions