Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson's disease.

Frontiers in human neuroscience | 2012

Parkinson's disease (PD) is marked by excessive synchronous activity in the beta (8-35 Hz) band throughout the cortico-basal ganglia network. The optimal location of high frequency deep brain stimulation (HF DBS) within the subthalamic nucleus (STN) region and the location of maximal beta hypersynchrony are currently matters of debate. Additionally, the effect of STN HF DBS on neural synchrony in functionally connected regions of motor cortex is unknown and is of great interest. Scalp EEG studies demonstrated that stimulation of the STN can activate motor cortex antidromically, but the spatial specificity of this effect has not been examined. The present study examined the effect of STN HF DBS on neural synchrony within the cortico-basal ganglia network in patients with PD. We measured local field potentials dorsal to and within the STN of PD patients, and additionally in the motor cortex in a subset of these patients. We used diffusion tensor imaging (DTI) to guide the placement of subdural cortical surface electrodes over the DTI-identified origin of the hyperdirect pathway (HDP) between motor cortex and the STN. The results demonstrated that local beta power was attenuated during HF DBS both dorsal to and within the STN. The degree of attenuation was monotonic with increased DBS voltages in both locations, but this voltage-dependent effect was greater in the central STN than dorsal to the STN (p < 0.05). Cortical signals over the estimated origin of the HDP also demonstrated attenuation of beta hypersynchrony during DBS dorsal to or within STN, whereas signals from non-specific regions of motor cortex were not attenuated. The spatially-specific suppression of beta synchrony in the motor cortex support the hypothesis that DBS may treat Parkinsonism by reducing excessive synchrony in the functionally connected sensorimotor network.

Pubmed ID: 22675296 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Chronux (tool)

RRID:SCR_005547

Open-source software package for the analysis of neural data. Chronux routines may be employed in the analysis of both point process and continuous data, ranging from preprocessing, exploratory and confirmatory analysis. The current release is implemented as a MATLAB library. Chronux offers several routines for computing spectra and coherences for both point and continuous processes. In addition, it also offers several general purpose routines that were found useful such as a routine for extracting specified segments from data, or binning spike time data with bins of a specified size. Since the data can be continuous valued, point process times, or point processes that are binned, methods that apply to all these data types are given in routines whose names end with ''''c'''' for continuous, ''''pb'''' for binned point processes, and ''''pt'''' for point process times. Thus, mtspectrumc computes the spectrum of continuous data, mtspectrumpb computes a spectrum for binned point processes, and mtspectrumpt compute spectra for data consisting of point process times. Hybrid routines are also available and similarly named - for instance coherencycpb computes the coherency between continuous and binned point process data.

View all literature mentions