Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mycobacterium tuberculosis and Clostridium difficille interactomes: demonstration of rapid development of computational system for bacterial interactome prediction.

Microbial informatics and experimentation | 2012

Protein-protein interaction (PPI) networks (interactomes) of most organisms, except for some model organisms, are largely unknown. Experimental methods including high-throughput techniques are highly resource intensive. Therefore, computational discovery of PPIs can accelerate biological discovery by presenting "most-promising" pairs of proteins that are likely to interact. For many bacteria, genome sequence, and thereby genomic context of proteomes, is readily available; additionally, for some of these proteomes, localization and functional annotations are also available, but interactomes are not available. We present here a method for rapid development of computational system to predict interactome of bacterial proteomes. While other studies have presented methods to transfer interologs across species, here, we propose transfer of computational models to benefit from cross-species annotations, thereby predicting many more novel interactions even in the absence of interologs. Mycobacterium tuberculosis (Mtb) and Clostridium difficile (CD) have been used to demonstrate the work.

Pubmed ID: 22587966 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIMH NIH HHS, United States
    Id: R01 MH094564

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Gene Ontology (tool)

RRID:SCR_002811

Computable knowledge regarding functions of genes and gene products. GO resources include biomedical ontologies that cover molecular domains of all life forms as well as extensive compilations of gene product annotations to these ontologies that provide largely species-neutral, comprehensive statements about what gene products do. Used to standardize representation of gene and gene product attributes across species and databases.

View all literature mentions

STRING (tool)

RRID:SCR_005223

Database of known and predicted protein interactions. The interactions include direct (physical) and indirect (functional) associations and are derived from four sources: Genomic Context, High-throughput experiments, (Conserved) Coexpression, and previous knowledge. STRING quantitatively integrates interaction data from these sources for a large number of organisms, and transfers information between these organisms where applicable. The database currently covers 5''214''234 proteins from 1133 organisms. (2013)

View all literature mentions