Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Regulation of prefrontal excitatory neurotransmission by dopamine in the nucleus accumbens core.

The Journal of physiology | 2012

Interactions between dopamine and glutamate signalling within the nucleus accumbens core are required for behavioural reinforcement and habit formation. Dopamine modulates excitatory glutamatergic signals from the prefrontal cortex, but the precise mechanism has not been identified. We combined optical and electrophysiology recordings in murine slice preparations from CB1 receptor-null mice and green fluorescent protein hemizygotic bacterial artificial chromosome transgenic mice to show how dopamine regulates glutamatergic synapses specific to the striatonigral and striatopallidal basal ganglia pathways. At low cortical frequencies, dopamine D1 receptors promote glutamate release to both D1 and D2 receptor-expressing medium spiny neurons while D2 receptors specifically inhibit excitatory inputs to D2 receptor-expressing cells by decreasing exocytosis from cortical terminals with a low probability of release. At higher cortical stimulation frequencies, this dopaminergic modulation of presynaptic activity is occluded by adenosine and endocannabinoids. Glutamatergic inputs to both D1 and D2 receptor-bearing medium spiny neurons are inhibited by adenosine, released upon activation of NMDA and AMPA receptors and adenylyl cyclase in D1 receptor-expressing cells. Excitatory inputs to D2 receptor-expressing cells are specifically inhibited by endocannabinoids, whose release is dependent on D2 and group 1 metabotropic glutamate receptors. The convergence of excitatory and inhibitory modulation of corticoaccumbal activity by dopamine, adenosine and endocannabinoids creates subsets of corticoaccumbal inputs, selectively and temporally reinforces strong cortical signals through the striatonigral pathway while inhibiting the weak, and may provide a mechanism whereby continued attention might be focused on behaviourally salient information.

Pubmed ID: 22586226 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Medical Research Council, United Kingdom
    Id: MC_U105184326
  • Agency: NINDS NIH HHS, United States
    Id: NS060803
  • Agency: NICHD NIH HHS, United States
    Id: P30 HD002274
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS060803
  • Agency: NICHD NIH HHS, United States
    Id: HD02274
  • Agency: NINDS NIH HHS, United States
    Id: K02 NS052536
  • Agency: NIDA NIH HHS, United States
    Id: T32 DA007278
  • Agency: NINDS NIH HHS, United States
    Id: NS052536
  • Agency: NIDA NIH HHS, United States
    Id: DA007278

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Mini Analysis Program (tool)

RRID:SCR_002184

Software tool that detects peaks of any type, any shape, any direction, and any size for neuroscientists who are studying spontaneous activities. Allows detection of virtually any kind of peaks including spontaneous miniature synaptic currents and potentials, action potential spikes, calcium imaging peaks, amperometric peaks, ECG peaks etc. It includes the complex and multiple peak detection algorithm. Has post-detection analyses including essential plots and statistical parameters. Group Analysis provides specialized and detailed analysis options for action potentials, decay fitting, fEPSP/population spikes, amperometry, etc.

View all literature mentions