Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Activity maintains structural plasticity of mossy fiber terminals in the hippocampus.

Neural activity plays an important role in organizing and optimizing neural circuits during development and in the mature nervous system. However, the cellular events that underlie this process still remain to be fully understood. In this study, we investigated the role of neural activity in regulating the structural plasticity of presynaptic terminals in the hippocampal formation. We designed a virus to drive the Drosophila Allatostatin receptor in individual dentate granule neurons to suppress activity of complex mossy fiber terminals 'on-demand' in organotypic slices and used time-lapse confocal imaging to determine the impact on presynaptic remodeling. We found that activity played an important role in maintaining the structural plasticity of the core region of the mossy fiber terminal (MFT) that synapses onto CA3 pyramidal cell thorny excrescences but was not essential for the motility of terminal filopodial extensions that contact local inhibitory neurons. Short-term suppression of activity did not have an impact on the size of the MFT, however, longer-term suppression reduced the overall size of the MFT. Remarkably, global blockade of activity with tetrodotoxin (TTX) interfered with the ability of single cell activity deprivation to slow down terminal dynamics suggesting that differences in activity levels among neighboring synapses promote synaptic remodeling events. The results from our studies indicate that neural activity plays an important role in maintaining structural plasticity of presynaptic compartments in the central nervous system and provide new insight into the time-frame during which activity can affect the morphology of synaptic connections.

Pubmed ID: 22579606 RIS Download

Mesh terms: Animals | CA3 Region, Hippocampal | Drosophila Proteins | Long-Term Synaptic Depression | Mossy Fibers, Hippocampal | Rats | Receptors, G-Protein-Coupled | Receptors, Neuropeptide | Synapses | Synaptic Potentials | Tetrodotoxin

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Phoenix Pharmaceuticals

Commercial antibody supplier that specializes in peptide-related products for research in obesity, cardiovascular disease, and diabetes.

tool

View all literature mentions

MetaMorph Microscopy Automation and Image Analysis Software

Software tool for automated microscope acquisition, device control, and image analysis. Used for integrating dissimilar fluorescent microscope hardware and peripherals into a single custom workstation, while providing all the tools needed to perform analysis of acquired images. Offers user friendly application modules for analysis such as cell signaling, cell counting, and protein expression.

tool

View all literature mentions