Literature search services are currently unavailable. During our hosting provider's UPS upgrade we experienced a hardware failure and are currently working to resolve the issue.

Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development.

The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.

Pubmed ID: 22579044


  • Reijns MA
  • Rabe B
  • Rigby RE
  • Mill P
  • Astell KR
  • Lettice LA
  • Boyle S
  • Leitch A
  • Keighren M
  • Kilanowski F
  • Devenney PS
  • Sexton D
  • Grimes G
  • Holt IJ
  • Hill RE
  • Taylor MS
  • Lawson KA
  • Dorin JR
  • Jackson AP



Publication Data

May 25, 2012

Associated Grants

  • Agency: Medical Research Council, Id: MC_PC_U127580972
  • Agency: Medical Research Council, Id: MC_PC_U127597124
  • Agency: Medical Research Council, Id: MC_U105663140
  • Agency: Medical Research Council, Id: MC_U127527201
  • Agency: Medical Research Council, Id: MC_U127584494
  • Agency: Medical Research Council, Id: MC_U127597124
  • Agency: Medical Research Council, Id:

Mesh Terms

  • Animals
  • Chromosomal Instability
  • DNA Replication
  • DNA-Directed DNA Polymerase
  • Embryo, Mammalian
  • Embryonic Stem Cells
  • Female
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Ribonuclease H
  • Ribonucleotides
  • Tumor Suppressor Protein p53