Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A synthetic human kinase can control cell cycle progression in budding yeast.

G3 (Bethesda, Md.) | 2011

The DDK kinase complex, composed of Cdc7 and Dbf4, is required for S-phase progression. The two component proteins show different degrees of sequence conservation between human and yeast. Here, we determine that Saccharomyces cerevisiae bearing human CDC7 and DBF4 grows comparably to cells with yeast DDK under standard growth conditions. HsDrf1 (a second human Dbf4-like protein) does not support growth, suggesting that HsDbf4 is the true ortholog of ScDbf4. Both human subunits are required to complement yeast cdc7Δ or dbf4Δ due to the inability of human Cdc7 or Dbf4 to interact with the corresponding yeast protein. Flow cytometry indicates normal cell cycle progression for yeast containing human DDK. However, yeast containing human DDK is sensitive to long-term exposure to hydroxyurea and fails to sporulate, suggesting that human DDK substitutes for some, but not all, of yeast DDK's functions. We mapped the region of Cdc7 required for species-specific function of DDK to the C-terminus of Cdc7 by substituting the yeast C-terminal 55 amino acid residues in place of the equivalent human residues. The resulting hybrid protein supported growth of a cdc7Δ strain only in the presence of ScDBF4. The strain supported by the hybrid CDC7 was not sensitive to HU and formed tetrads. Together, our data indicate that DDK's targeting of its essential substrate is conserved between species, whereas the interactions within DDK are species specific.

Pubmed ID: 22384342 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SGD (tool)

RRID:SCR_004694

A curated database that provides comprehensive integrated biological information for Saccharomyces cerevisiae along with search and analysis tools to explore these data. SGD allows researchers to discover functional relationships between sequence and gene products in fungi and higher organisms. The SGD also maintains the S. cerevisiae Gene Name Registry, a complete list of all gene names used in S. cerevisiae which includes a set of general guidelines to gene naming. Protein Page provides basic protein information calculated from the predicted sequence and contains links to a variety of secondary structure and tertiary structure resources. Yeast Biochemical Pathways allows users to view and search for biochemical reactions and pathways that occur in S. cerevisiae as well as map expression data onto the biochemical pathways. Literature citations are provided where available.

View all literature mentions