Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Multi-cellular rosettes in the mouse visceral endoderm facilitate the ordered migration of anterior visceral endoderm cells.

PLoS biology | 2012

The visceral endoderm (VE) is a simple epithelium that forms the outer layer of the egg-cylinder stage mouse embryo. The anterior visceral endoderm (AVE), a specialised subset of VE cells, is responsible for specifying anterior pattern. AVE cells show a stereotypic migratory behaviour within the VE, which is responsible for correctly orientating the anterior-posterior axis. The epithelial integrity of the VE is maintained during the course of AVE migration, which takes place by intercalation of AVE and other VE cells. Though a continuous epithelial sheet, the VE is characterised by two regions of dramatically different behaviour, one showing robust cell movement and intercalation (in which the AVE migrates) and one that is static, with relatively little cell movement and mixing. Little is known about the cellular rearrangements that accommodate and influence the sustained directional movement of subsets of cells (such as the AVE) within epithelia like the VE. This study uses an interdisciplinary approach to further our understanding of cell movement in epithelia. Using both wild-type embryos as well as mutants in which AVE migration is abnormal or arrested, we show that AVE migration is specifically linked to changes in cell packing in the VE and an increase in multi-cellular rosette arrangements (five or more cells meeting at a point). To probe the role of rosettes during AVE migration, we develop a mathematical model of cell movement in the VE. To do this, we use a vertex-based model, implemented on an ellipsoidal surface to represent a realistic geometry for the mouse egg-cylinder. The potential for rosette formation is included, along with various junctional rearrangements. Simulations suggest that while rosettes are not essential for AVE migration, they are crucial for the orderliness of this migration observed in embryos. Our simulations are similar to results from transgenic embryos in which Planar Cell Polarity (PCP) signalling is disrupted. Such embryos have significantly reduced rosette numbers, altered epithelial packing, and show abnormalities in AVE migration. Our results show that the formation of multi-cellular rosettes in the mouse VE is dependent on normal PCP signalling. Taken together, our model and experimental observations suggest that rosettes in the VE epithelium do not form passively in response to AVE migration. Instead, they are a PCP-dependent arrangement of cells that acts to buffer the disequilibrium in cell packing generated in the VE by AVE migration, enabling AVE cells to migrate in an orderly manner.

Pubmed ID: 22346733 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: Medical Research Council, United Kingdom
    Id: MC_U120081320
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/F011512/1
  • Agency: Wellcome Trust, United Kingdom
    Id: 074246/Z04/Z

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Welcome Trust (tool)

RRID:SCR_001852

The Wellcome Trust is the largest charity in the UK. We fund innovative biomedical research, in the UK and internationally, spending over 600 million each year to support the brightest scientists with the best ideas. The Wellcome Trust is an independent charity funding research to improve human and animal health. Established in 1936 and with an endowment of around 13 billion, it is the UK's largest non-governmental source of funds for biomedical research. What we do We spend over 600 million every year both in the UK and internationally achieving our mission. Funding We support many different kinds of research and activities with the ultimate aim of protecting and improving human and animal health. This support is not restricted to UK researchers - we devote significant funding to international research too. Biomedical science Our biomedical science funding enables the investigation of health and disease in humans and animals. This includes funding for scientists, clinicians and veterinarians at different career stages. Technology transfer Our technology transfer funding supports the development of innovative, early-stage projects with potential medical applications. Medical humanities Our medical humanities funding supports research into biomedical ethics and the history of medicine. Public engagement Our public engagement funding promotes interest, excitement and debate around science and society. Capital funding Our capital funding is for large-scale construction or refurbishment projects in the UK that support science, public engagement, medical history, or the activities of learned societies. Strategic awards Our Strategic Awards provide flexible funding that adds value to excellent research groups. Managing a grant This area contains information and resources to help you manage a grant once it has been awarded, from the grant-start certificate to the end-of-grant report and beyond. Education Resources Teaching and education Resources to help promote contemporary science in the curriculum and to enable young people to engage with biomedical science. Tree of Life Darwin200 Big Picture Science Learning Centres Scientific animations Creative Encounters Courses and conferences Trust-run conferences, courses and workshops for scientists, historians, ethicists, social scientists, teachers, healthcare professionals and policymakers, held in the UK and overseas. Advanced Courses Scientific conferences Conference centres Retreats History of medicine Biomedical ethics Biomedical resources Tools, databases and information to support different areas of biomedical research, including genomics, post-genomics and developmental biology. Animal research Genomics Model organisms Microorganisms Post-genomics Tissues Researcher support Support and advice for all kinds of engagement activities to help you communicate your work in the most effective and rewarding way possible. About researcher support National opportunities Regional opportunities Highlights Publications Browse a wealth of publications covering all aspects of the work we fund. Wellcome Trust websites Explore a range of sites covering key biomedical topics and our public engagement activities.

View all literature mentions

Biotechnology and Biological Sciences Research Council (tool)

RRID:SCR_011118

The UK''s leading funding agency for academic research and training in the non-clinical life sciences.

View all literature mentions

Adobe Illustrator (tool)

RRID:SCR_010279

Vector graphics software to create digital graphics, illustrations, and typography for several types of media: print, web, interactive, video, and mobile.

View all literature mentions

CBA/J (tool)

RRID:IMSR_JAX:000656

Mus musculus with name CBA/J from IMSR.

View all literature mentions