Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Heparin-binding epidermal growth factor-like growth factor suppresses experimental liver fibrosis in mice.

Laboratory investigation; a journal of technical methods and pathology | 2012

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a cytoprotective agent in several organ systems but its roles in liver fibrosis are unclear. We studied the roles of HB-EGF in experimental liver fibrosis in mice and during hepatic stellate cell (HSC) activation. Thioacetamide (TAA; 100 mg/kg) was administered by intraperitoneal injection three times a week for 4 weeks to wild-type HB-EGF(+/+) or HB-EGF-null (HB-EGF(-/-)) male mice. Livers were examined for histology and expression of key fibrotic markers. Primary cultured HSCs isolated from untreated HB-EGF(+/+) or HB-EGF(-/-) mice were examined for fibrotic markers and/or cell migration either during culture-induced activation or after exogenous HB-EGF (100 ng/ml) treatment. TAA induced liver fibrosis in both HB-EGF(+/+) and HB-EGF(-/-) mice. Hepatic HB-EGF expression was decreased in TAA-treated HB-EGF(+/+) mice by 37.6% (P<0.05) as compared with animals receiving saline alone. HB-EGF(-/-) mice treated with TAA showed increased hepatic α-smooth muscle actin-positive cells and collagen deposition, and, as compared with HB-EGF(+/+) mice, TAA-stimulated hepatic mRNA levels in HB-EGF(-/-) mice were, respectively, 2.1-, 1.7-, 1.8-, 2.2-, 1.2- or 3.3-fold greater for α-smooth muscle actin, α1 chain of collagen I or III (COL1A1 or COL3A1), transforming growth factor-β1, connective tissue growth factor or tissue inhibitor of metalloproteinase-1 (P<0.05). HB-EGF expression was detectable in primary cultured HSCs from HB-EGF(+/+) mice. Both endogenous and exogenous HB-EGF inhibited HSC activation in primary culture, and HB-EGF enhanced HSC migration. These findings suggest that HB-EGF gene knockout in mice increases susceptibility to chronic TAA-induced hepatic fibrosis and that HB-EGF expression or action is associated with suppression of fibrogenic pathways in HSCs.

Pubmed ID: 22330337 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAAA NIH HHS, United States
    Id: R01 AA016003
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM61193
  • Agency: NIAAA NIH HHS, United States
    Id: R01 AA016003-05
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM061193
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM061193-10
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK074611-05
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK074611

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ScyTek Laboratories (tool)

RRID:SCR_005919

An Antibody supplier

View all literature mentions