Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

GABRB3 mutation, G32R, associated with childhood absence epilepsy alters α1β3γ2L γ-aminobutyric acid type A (GABAA) receptor expression and channel gating.

A GABA(A) receptor β3 subunit mutation, G32R, has been associated with childhood absence epilepsy. We evaluated the possibility that this mutation, which is located adjacent to the most N-terminal of three β3 subunit N-glycosylation sites, might reduce GABAergic inhibition by increasing glycosylation of β3 subunits. The mutation had three major effects on GABA(A) receptors. First, coexpression of β3(G32R) subunits with α1 or α3 and γ2L subunits in HEK293T cells reduced surface expression of γ2L subunits and increased surface expression of β3 subunits, suggesting a partial shift from ternary αβ3γ2L receptors to binary αβ3 and homomeric β3 receptors. Second, β3(G32R) subunits were more likely than β3 subunits to be N-glycosylated at Asn-33, but increases in glycosylation were not responsible for changes in subunit surface expression. Rather, both phenomena could be attributed to the presence of a basic residue at position 32. Finally, α1β3(G32R)γ2L receptors had significantly reduced macroscopic current density. This reduction could not be explained fully by changes in subunit expression levels (because γ2L levels decreased only slightly) or glycosylation (because reduction persisted in the absence of glycosylation at Asn-33). Single channel recording revealed that α1β3(G32R)γ2L receptors had impaired gating with shorter mean open time. Homology modeling indicated that the mutation altered salt bridges at subunit interfaces, including regions important for subunit oligomerization. Our results suggest both a mechanism for mutation-induced hyperexcitability and a novel role for the β3 subunit N-terminal α-helix in receptor assembly and gating.

Pubmed ID: 22303015 RIS Download

Mesh terms: Amino Acid Sequence | Cell Membrane | Epilepsy, Absence | Glycosylation | HEK293 Cells | Humans | Membrane Potentials | Molecular Sequence Data | Mutation, Missense | Patch-Clamp Techniques | Protein Binding | Protein Interaction Domains and Motifs | Protein Multimerization | Protein Structure, Quaternary | Protein Structure, Secondary | Receptors, GABA-A | Sequence Alignment | Synaptic Transmission | gamma-Aminobutyric Acid

Research resources used in this publication

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, Id: R01 NS051590

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.