Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Ablation of NG2 proteoglycan leads to deficits in brown fat function and to adult onset obesity.

PloS one | 2012

Obesity is a major health problem worldwide. We are studying the causes and effects of obesity in C57Bl/6 mice following genetic ablation of NG2, a chondroitin sulfate proteoglycan widely expressed in progenitor cells and also in adipocytes. Although global NG2 ablation delays early postnatal adipogenesis in mouse skin, adult NG2 null mice are paradoxically heavier than wild-type mice, exhibiting larger white fat deposits. This adult onset obesity is not due to NG2-dependent effects on CNS function, since specific ablation of NG2 in oligodendrocyte progenitors yields the opposite phenotype; i.e. abnormally lean mice. Metabolic analysis reveals that, while activity and food intake are unchanged in global NG2 null mice, O(2) consumption and CO(2) production are decreased, suggesting a decrease in energy expenditure. Since brown fat plays important roles in regulating energy expenditure, we have investigated brown fat function via cold challenge and high fat diet feeding, both of which induce the adaptive thermogenesis that normally occurs in brown fat. In both tests, body temperatures in NG2 null mice are reduced compared to wild-type mice, indicating a deficit in brown fat function in the absence of NG2. In addition, adipogenesis in NG2 null brown pre-adipocytes is dramatically impaired compared to wild-type counterparts. Moreover, mRNA levels for PR domain containing 16 (PRDM16) and peroxisome proliferator-activated receptor γ coactivator (PGC)1-α, proteins important for brown adipocyte differentiation, are decreased in NG2 null brown fat deposits in vivo and NG2 null brown pre-adipocytes in vitro. Altogether, these results indicate that brown fat dysfunction in NG2 null mice results from deficits in the recruitment and/or development of brown pre-adipocytes. As a consequence, obesity in NG2 null mice may occur due to disruptions in brown fat-dependent energy homeostasis, with resulting effects on lipid storage in white adipocytes.

Pubmed ID: 22295099 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: NS057096
  • Agency: NCI NIH HHS, United States
    Id: R01 CA095287
  • Agency: NICHD NIH HHS, United States
    Id: P01 HD025938
  • Agency: NCI NIH HHS, United States
    Id: R01 CA95287
  • Agency: NINDS NIH HHS, United States
    Id: P30 NS057096
  • Agency: NICHD NIH HHS, United States
    Id: P01 HD25938

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

Crl:CD1(ICR) (tool)

RRID:IMSR_CRL:022

Mus musculus with name Crl:CD1(ICR) from IMSR.

View all literature mentions

C57BL/6N (tool)

RRID:MGI:2159965

laboratory mouse with name C57BL/6N from MGI.

View all literature mentions