Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations.

Human molecular genetics | May 1, 2012

http://www.ncbi.nlm.nih.gov/pubmed/22286171

Abnormalities in Z-disc proteins cause hypertrophic (HCM), dilated (DCM) and/or restrictive cardiomyopathy (RCM), but disease-causing mechanisms are not fully understood. Myopalladin (MYPN) is a Z-disc protein expressed in striated muscle and functions as a structural, signaling and gene expression regulating molecule in response to muscle stress. MYPN was genetically screened in 900 patients with HCM, DCM and RCM, and disease-causing mechanisms were investigated using comparative immunohistochemical analysis of the patient myocardium and neonatal rat cardiomyocytes expressing mutant MYPN. Cardiac-restricted transgenic (Tg) mice were generated and protein-protein interactions were evaluated. Two nonsense and 13 missense MYPN variants were identified in subjects with DCM, HCM and RCM with the average cardiomyopathy prevalence of 1.66%. Functional studies were performed on two variants (Q529X and Y20C) associated with variable clinical phenotypes. Humans carrying the Y20C-MYPN variant developed HCM or DCM, whereas Q529X-MYPN was found in familial RCM. Disturbed myofibrillogenesis with disruption of α-actinin2, desmin and cardiac ankyrin repeat protein (CARP) was evident in rat cardiomyocytes expressing MYPN(Q529X). Cardiac-restricted MYPN(Y20C) Tg mice developed HCM and disrupted intercalated discs, with disturbed expression of desmin, desmoplakin, connexin43 and vinculin being evident. Failed nuclear translocation and reduced binding of Y20C-MYPN to CARP were demonstrated using in vitro and in vivo systems. MYPN mutations cause various forms of cardiomyopathy via different protein-protein interactions. Q529X-MYPN causes RCM via disturbed myofibrillogenesis, whereas Y20C-MYPN perturbs MYPN nuclear shuttling and leads to abnormal assembly of terminal Z-disc within the cardiac transitional junction and intercalated disc.

Pubmed ID: 22286171 RIS Download

Mesh terms: Animals | Animals, Newborn | Cardiomyopathy, Dilated | Cardiomyopathy, Hypertrophic, Familial | Case-Control Studies | Codon, Nonsense | Female | Humans | Male | Mice | Mice, Inbred C57BL | Mice, Transgenic | Microscopy, Electron, Transmission | Muscle Proteins | Mutant Proteins | Mutation | Mutation, Missense | Myocardium | Myocytes, Cardiac | Nuclear Proteins | Pedigree | Phenotype | Protein Binding | Rats | Rats, Mutant Strains | Rats, Sprague-Dawley | Repressor Proteins

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, Id: NIH R01 HL53392
  • Agency: NHLBI NIH HHS, Id: R01 HL087000

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.