• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


A role for metaphase spindle elongation forces in correction of merotelic kinetochore attachments.

During mitosis, equal segregation of chromosomes depends on proper kinetochore-microtubule attachments. Merotelic kinetochore orientation, in which a single kinetochore binds microtubules from both spindle poles [1], is a major cause of chromosome instability [2], which is commonly observed in solid tumors [3, 4]. Using the fission yeast Schizosaccharomyces pombe, we show that a proper force balance between kinesin motors on interpolar spindle microtubules is critical for correcting merotelic attachments. Inhibition of the plus-end-directed spindle elongation motors kinesin-5 (Cut7) and kinesin-6 (Klp9) reduces spindle length, tension at kinetochores, and the frequency of merotelic attachments. In contrast, merotely is increased by deletion of the minus-end-directed kinesin-14 (Klp2) or overexpression of Klp9. Also, Cdk1 regulates spindle elongation forces to promote merotelic correction by phosphorylating and inhibiting Klp9. The role of spindle elongation motors in merotelic correction is conserved, because partial inhibition of the human kinesin-5 homolog Eg5 using the drug monastrol reduces spindle length and lagging chromosome frequency in both normal (RPE-1) and tumor (CaCo-2) cells. These findings reveal unexpected links between spindle forces and correction of merotelic attachments and show that pharmacological manipulation of spindle elongation forces might be used to reduce chromosome instability in cancer cells.

Pubmed ID: 22264609


  • Choi SH
  • McCollum D


Current biology : CB

Publication Data

February 7, 2012

Associated Grants

  • Agency: NIGMS NIH HHS, Id: R01 GM068786
  • Agency: NIGMS NIH HHS, Id: R01 GM068786-08
  • Agency: NIGMS NIH HHS, Id: R01GM068786

Mesh Terms

  • CDC2 Protein Kinase
  • Cell Cycle Proteins
  • Cell Line
  • Chromosomal Instability
  • Chromosomal Proteins, Non-Histone
  • Chromosome Segregation
  • Humans
  • Kinesin
  • Kinetochores
  • Microtubules
  • Nuclear Proteins
  • Phosphorylation
  • Protein Tyrosine Phosphatases
  • Pyrimidines
  • Schizosaccharomyces
  • Schizosaccharomyces pombe Proteins
  • Spindle Apparatus
  • Thiones