We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mutation of zebrafish Snapc4 is associated with loss of the intrahepatic biliary network.

Developmental biology | Mar 1, 2012

Biliary epithelial cells line the intrahepatic biliary network, a complex three-dimensional network of conduits. The loss of differentiated biliary epithelial cells is the primary cause of many congenital liver diseases. We identified a zebrafish snapc4 (small nuclear RNA-activating complex polypeptide 4) mutant in which biliary epithelial cells initially differentiate but subsequently disappear. In these snapc4 mutant larvae, biliary epithelial cells undergo apoptosis, leading to degeneration of the intrahepatic biliary network. Consequently, in snapc4 mutant larvae, biliary transport of ingested fluorescent lipids to the gallbladder is blocked. Snapc4 is the largest subunit of a protein complex that regulates small nuclear RNA (snRNA) transcription. The snapc4(s445) mutation causes a truncation of the C-terminus, thereby deleting the domain responsible for a specific interaction with Snapc2, a vertebrate specific subunit of the SNAP complex. This mutation leads to a hypomorphic phenotype, as only a subset of snRNA transcripts are quantitatively altered in snapc4(s445) mutant larvae. snapc2 knockdown also disrupts the intrahepatic biliary network in a similar fashion as in snapc4(s445) mutant larvae. These data indicate that the physical interaction between Snapc2 and Snapc4 is important for the expression of a subset of snRNAs and biliary epithelial cell survival in zebrafish.

Pubmed ID: 22222761 RIS Download

Mesh terms: Animals | Animals, Genetically Modified | Binding Sites | Epithelial Cells | Female | Gene Expression Regulation, Developmental | Gene Knockdown Techniques | Gene Regulatory Networks | Green Fluorescent Proteins | Immunohistochemistry | In Situ Hybridization | Larva | Liver | Male | Microscopy, Confocal | Microscopy, Electron | Mutation | Protein Binding | Reverse Transcriptase Polymerase Chain Reaction | Time Factors | Transcription Factors | Zebrafish | Zebrafish Proteins

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.