Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Crosstalk between nuclear factor I-C and transforming growth factor-β1 signaling regulates odontoblast differentiation and homeostasis.

PloS one | Dec 23, 2011

Transforming growth factor-β1 (TGF-β1) signaling plays a key role in vertebrate development, homeostasis, and disease. Nuclear factor I-C (NFI-C) has been implicated in TGF-β1 signaling, extracellular matrix gene transcription, and tooth root development. However, the functional relationship between NFI-C and TGF-β1 signaling remains uncharacterized. The purpose of this study was to identify the molecular interactions between NFI-C and TGF-β1 signaling in mouse odontoblasts. Real-time polymerase chain reaction and western analysis demonstrated that NFI-C expression levels were inversely proportional to levels of TGF-β1 signaling molecules during in vitro odontoblast differentiation. Western blot and immunofluorescence results showed that NFI-C was significantly degraded after TGF-β1 addition in odontoblasts, and the formation of the Smad3 complex was essential for NFI-C degradation. Additionally, ubiquitination assay results showed that Smurf1 and Smurf2 induced NFI-C degradation and polyubiquitination in a TGF-β1-dependent manner. Both kinase and in vitro binding assays revealed that the interaction between NFI-C and Smurf1/Smurf2 requires the activation of the mitogen-activated protein kinase pathway by TGF-β1. Moreover, degradation of NFI-C induced by TGF-β1 occurred generally in cell types other than odontoblasts in normal human breast epithelial cells. In contrast, NFI-C induced dephosphorylation of p-Smad2/3. These results show that crosstalk between NFI-C and TGF-β1 signaling regulates cell differentiation and homeostatic processes in odontoblasts, which might constitute a common cellular mechanism.

Pubmed ID: 22195013 RIS Download

Mesh terms: Animals | Cell Differentiation | Cell Line | Enzyme Activation | Gene Expression Regulation | HEK293 Cells | Homeostasis | Humans | MAP Kinase Signaling System | Mice | Models, Biological | NFI Transcription Factors | Odontoblasts | Phosphorylation | Protein Binding | Proteolysis | Signal Transduction | Smad2 Protein | Smad3 Protein | Transforming Growth Factor beta1 | Ubiquitin-Protein Ligases | Ubiquitination

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ImageJ

A Java image processing program which can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images. It can read many image formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and raw. It runs, either as an online applet or as a downloadable application, on any computer with a Java 1.4 or later virtual machine. Downloadable distributions are available for Windows, Mac OS, Mac OS X and Linux. It supports stacks, a series of images that share a single window. It is multithreaded, so time-consuming operations such as image file reading can be performed in parallel with other operations. It can calculate area and pixel value statistics of user-defined selections. It can measure distances and angles. It can create density histograms and line profile plots. It supports standard image processing functions such as contrast manipulation, sharpening, smoothing, edge detection and median filtering. It does geometric transformations such as scaling, rotation and flips. Image can be zoomed up to 32:1 and down to 1:32. All analysis and processing functions are available at any magnification factor. The program supports any number of windows (images) simultaneously, limited only by available memory. Spatial calibration is available to provide real world dimensional measurements in units such as millimeters. Density or gray scale calibration is also available. ImageJ was designed with an open architecture that provides extensibility via Java plugins. Custom acquisition, analysis and processing plugins can be developed using ImageJ built in editor and Java compiler. User-written plugins make it possible to solve almost any image processing or analysis problem.

tool

View all literature mentions