Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Use of the gamma method for self-contained gene-set analysis of SNP data.

European journal of human genetics : EJHG | 2012

Gene-set analysis (GSA) evaluates the overall evidence of association between a phenotype and all genotyped single nucleotide polymorphisms (SNPs) in a set of genes, as opposed to testing for association between a phenotype and each SNP individually. We propose using the Gamma Method (GM) to combine gene-level P-values for assessing the significance of GS association. We performed simulations to compare the GM with several other self-contained GSA strategies, including both one-step and two-step GSA approaches, in a variety of scenarios. We denote a 'one-step' GSA approach to be one in which all SNPs in a GS are used to derive a test of GS association without consideration of gene-level effects, and a 'two-step' approach to be one in which all genotyped SNPs in a gene are first used to evaluate association of the phenotype with all measured variation in the gene and then the gene-level tests of association are aggregated to assess the GS association with the phenotype. The simulations suggest that, overall, two-step methods provide higher power than one-step approaches and that combining gene-level P-values using the GM with a soft truncation threshold between 0.05 and 0.20 is a powerful approach for conducting GSA, relative to the competing approaches assessed. We also applied all of the considered GSA methods to data from a pharmacogenomic study of cisplatin, and obtained evidence suggesting that the glutathione metabolism GS is associated with cisplatin drug response.

Pubmed ID: 22166939 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: U19 GM061388
  • Agency: NIAAA NIH HHS, United States
    Id: R03 AA019570
  • Agency: NCI NIH HHS, United States
    Id: R21 CA140879
  • Agency: NIGMS NIH HHS, United States
    Id: GM86689
  • Agency: NIGMS NIH HHS, United States
    Id: GM61388
  • Agency: NIAAA NIH HHS, United States
    Id: AA019570
  • Agency: NIGMS NIH HHS, United States
    Id: U01 GM061388
  • Agency: NCI NIH HHS, United States
    Id: K22 CA130828
  • Agency: NCI NIH HHS, United States
    Id: CA130828
  • Agency: NCI NIH HHS, United States
    Id: CA140879
  • Agency: NCI NIH HHS, United States
    Id: CA136393
  • Agency: NIGMS NIH HHS, United States
    Id: R21 GM086689
  • Agency: NCI NIH HHS, United States
    Id: P50 CA136393

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ExPANdS (tool)

RRID:SCR_005199

Software that characterizes coexisting subpopulations (SPs) in a tumor using copy number and allele frequencies derived from exome- or whole genome sequencing input data. The model amplifies the statistical power to detect coexisting genotypes, by fully exploiting run-specific tradeoffs between depth of coverage and breadth of coverage. ExPANdS predicts the number of clonal expansions, the size of the resulting SPs in the tumor bulk, the mutations specific to each SP and tumor purity. The main function runExPANdS provides the complete functionality needed to predict coexisting SPs from single nucleotide variations (SNVs) and associated copy numbers. The robustness of the subpopulation predictions by ExPANdS increases with the number of mutations provided. It is recommended that at least 200 mutations are used as an input to obtain stable results.

View all literature mentions

Bioconductor (tool)

RRID:SCR_006442

Software repository for R packages related to analysis and comprehension of high throughput genomic data. Uses separate set of commands for installation of packages. Software project based on R programming language that provides tools for analysis and comprehension of high throughput genomic data.

View all literature mentions