Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mice Lacking Ras-GRF1 Show Contextual Fear Conditioning but not Spatial Memory Impairments: Convergent Evidence from Two Independently Generated Mouse Mutant Lines.

Frontiers in behavioral neuroscience | 2011

Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning Brambilla's mice with a third mouse line (GENA53) in which a non-sense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in Brambilla's mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdala functions but possibly to some distinct hippocampal connections specific to contextual learning.

Pubmed ID: 22164138 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Allen Institute for Brain Science (tool)

RRID:SCR_006491

Seattle based independent, nonprofit medical research organization dedicated to accelerating the understanding of how human brain works. Provides free data and tools to researchers and educators and variety of unique online public resources for exploring the nervous system. Integrates gene expression data and neuroanatomy, along with data search and viewing tools, these resources are openly accessible via the Allen Brain Atlas data portal. Provides Allen Mouse Brain, Allen Spinal Cord Atlas, Allen Developing Mouse Brain Atlas, Allen Human Brain Atlas,Allen Mouse Brain Connectivity Atlas, Allen Cell Type Database, The Ivy Glioblastoma Atlas Project (Ivy GAP), The BrainSpan Atlas of the Developing Human Brain.

View all literature mentions

SMART (tool)

RRID:SCR_005026

Software tool for identification and annotation of genetically mobile domains and analysis of domain architectures.

View all literature mentions

FreezeFrame (tool)

RRID:SCR_014429

A video-based system to detect animal movement in fear conditioning experiments, as well as movements in learned helplessness experiments. FreezeFrame can detect animal movements (as small as 1mm) and actions, including grooming, sniffing, turning, and rearing. It can also collect and process data for learned helplessness experiments, such as Tail Suspension and the Porsolt Forced Swim Test. This software can monitor animals for up to 15 times per second.

View all literature mentions