Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain.

Biochemical and biophysical research communications | 2011

Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca(2+) sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V(max) and K(M) for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.

Pubmed ID: 22120626 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAMS NIH HHS, United States
    Id: R01AR049277
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL095572-02
  • Agency: NIAMS NIH HHS, United States
    Id: R01 AR049277-03
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL095572
  • Agency: NHLBI NIH HHS, United States
    Id: R01HL095572
  • Agency: NIAMS NIH HHS, United States
    Id: R01 AR049277

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BioWorks (tool)

RRID:SCR_014594

A a configurable software package for peptide and protein mass spectrometry analyses. It includes the SEQUEST search algorithm to identify separate proteins in complex mixtures, interactive navigation tools to filter and sort protein summaries, customized spectral plots, and chromatograms using the PEPMATCH and PEPMAP tools. This software also has batch processing capabilities to improve throughput by queuing up several files, and custom-build proprietary databases, index databases, and retrieve databases through a public server.

View all literature mentions