Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit.

Cell | Nov 11, 2011

http://www.ncbi.nlm.nih.gov/pubmed/22078879

After sister chromatid splitting at anaphase onset, exit from mitosis comprises an ordered series of events. Dephosphorylation of numerous mitotic substrates, which were phosphorylated by cyclin-dependent kinase (Cdk), is thought to bring about mitotic exit, but how temporal ordering of mitotic exit events is achieved is poorly understood. Here, we show, using budding yeast, that dephosphorylation of Cdk substrates involved in sequential mitotic exit events occurs with ordered timing. We test different models of how ordering might be achieved by modulating Cdk and Cdk-counteracting phosphatase Cdc14 activities in vivo, as well as by kinetic analysis of Cdk substrate phosphorylation and dephosphorylation in vitro. Our results suggest that the gradual change of the phosphatase to kinase ratio over the course of mitotic exit is read out by Cdk substrates that respond by dephosphorylation at distinct thresholds. This provides an example and a mechanistic explanation for a quantitative model of cell-cycle progression.

Pubmed ID: 22078879 RIS Download

Mesh terms: Cell Cycle | Cell Cycle Proteins | Cyclin B | Cyclin-Dependent Kinases | Mitosis | Models, Biological | Phosphoric Monoester Hydrolases | Phosphorylation | Protein Tyrosine Phosphatases | Saccharomyces cerevisiae | Saccharomyces cerevisiae Proteins

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.