Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

RNF34 is a cold-regulated E3 ubiquitin ligase for PGC-1α and modulates brown fat cell metabolism.

http://www.ncbi.nlm.nih.gov/pubmed/22064484

The transcriptional coactivator PGC-1α is a master regulator of energy metabolism and adaptive thermogenesis in the brown fat cell. PGC-1α is a short-lived protein, and the molecular components that control PGC-1α turnover and their functional importance in energy metabolism are largely unknown. Here we performed a luciferase-based overexpression screen and identified a Ring-finger-containing protein, RNF34, as a specific E3 ubiquitin ligase for PGC-1α. RNF34 is a nuclear protein that interacts with and ubiquitinates PGC-1α to promote its turnover. Interestingly, RNF34 binds to the C-terminal half of PGC-1α and targets it for degradation independently of the previously identified N-terminal phosphodegron motif. In brown fat cells, knockdown of RNF34 increases the endogenous PGC-1α protein level, uncoupling protein 1 (UCP1) expression, and oxygen consumption, while the opposite effects are observed in brown fat cells ectopically expressing wild-type RNF34 but not in cells expressing the ligase activity-defective mutant. Moreover, cold exposure and β3-adrenergic receptor signaling, conditions that induce PGC-1α expression, suppress RNF34 expression in the brown fat cell, indicating a physiological relevance of this E3 ligase in thermogenesis. Our results reveal that RNF34 is a bona fide E3 ubiquitin ligase for PGC-1α and negatively regulates brown fat cell metabolism.

Pubmed ID: 22064484 RIS Download

Mesh terms: Adipocytes, Brown | Animals | COS Cells | Carrier Proteins | Cell Cycle Proteins | Cells, Cultured | Cercopithecus aethiops | Cold Temperature | Energy Metabolism | F-Box Proteins | Gene Expression Regulation | HEK293 Cells | Humans | Mice | Protein Binding | Trans-Activators | Ubiquitin-Protein Ligases | Ubiquitination | Up-Regulation