Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Selective loss of AMPA receptor subunits at inhibitory neuron synapses in the cerebellum of the ataxic stargazer mouse.

Brain research | 2012

AMPA receptor subunits (GluA1-4) are trafficked to membrane synaptic sites by transmembrane AMPA receptor regulatory proteins (TARPs). In the stargazer mutant mouse, expression of TARP-γ2 (stargazin) is severely reduced, resulting in cerebellar ataxia. Stargazer granule cells (GCs) have a complete loss of functional AMPARs, as γ2 is their main TARP; hence mossy fiber (MF)-GC synapses are silent. The aim of the current study was to investigate how the stargazin deficit affects expression levels of AMPAR subunits at output synapses from GC parallel fibers (PF) onto inhibitory neurons in the molecular layer. Cerebella from male litter-pairs of stargazer and control mice were analyzed by post-embedding immunogold-microscopy. Levels of GluA2/3 and GluA4 were evaluated by measuring relative density of immunogold at PF-Purkinje cell (PF-PC) and PF-interneuron (PF-In) synapses respectively. In total, 100 synapses were analyzed in each pair of stargazer and control littermates. GluA2/3 and GluA4 expression was significantly reduced throughout the stargazer cerebellar cortex. GluA2/3 levels were reduced by 52% (p<0.001) at PF-PC synapses, and GluA4 levels by 31% (p<0.001) at PF-In synapses in stargazers. In neither case, however, was there a total loss of synaptic AMPAR subunits as occurs at MF-GC synapses. As the inhibitory neurons of the molecular layer express other TARPs in addition to stargazin, TARP compensation may limit the loss of GluA subunits at these synapses and explain why they are not silent like the MF-GC synapses. These data suggest that the ataxic phenotype in stargazers is primarily due to absence of AMPARs at cerebellar MF-GC synapses.

Pubmed ID: 22055455 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Adobe Illustrator (tool)

RRID:SCR_010279

Vector graphics software to create digital graphics, illustrations, and typography for several types of media: print, web, interactive, video, and mobile.

View all literature mentions

Adobe Photoshop (tool)

RRID:SCR_014199

Software for image processing, analysis, and editing. The software includes features such as touch capabilities, a customizable toolbar, 2D and 3D image merging, and Cloud access and options.

View all literature mentions