Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Tissue-specific alternative polyadenylation at the imprinted gene Mest regulates allelic usage at Copg2.

Nucleic acids research | 2012

The gene Mest (also known as Peg1) is regulated by genomic imprinting in the mouse and only the paternal allele is active for transcription. MEST is similarly imprinted in humans, where it is a candidate for the growth retardation Silver-Russell syndrome. The MEST protein belongs to an ancient family of hydrolases but its function is still unknown. It is highly conserved in vertebrates although imprinted expression is only observed in marsupials and eutherians, thus a recent evolutionary event. Here we describe the identification of new imprinted RNA products at the Mest locus, longer variants of the RNA, called MestXL, transcribed >10 kb into the downstream antisense gene Copg2. During development MestXL is produced exclusively in the developing central nervous system (CNS) by alternative polyadenylation. Copg2 is biallelically expressed in the embryo except in MestXL-expressing tissues, where we observed preferential expression from the maternal allele. To analyze the function of the MestXL transcripts in Copg2 regulation, we studied the effects of a targeted allele at Mest introducing a truncation in the mRNA. We show that both the formation of the MestXL isoforms and the allelic bias at Copg2 are lost in the CNS of mutants embryos. Our results propose a new mechanism to regulate allelic usage in the mammalian genome, via tissue-specific alternative polyadenylation and transcriptional interference in sense-antisense pairs at imprinted loci.

Pubmed ID: 22053079 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: CIHR, Canada
    Id: 82863-1
  • Agency: CIHR, Canada
    Id: 87399-1
  • Agency: CIHR, Canada
    Id: MOP-82863

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Mouse Gene Expression at the BC Cancer Agency (tool)

RRID:SCR_008091

A portal to the Mouse Atlas of Gene Expression Project and Dissecting Gene Expression Networks in Mammalian Organogenesis Project. This Atlas will define the normal state for many tissues by determining, in a comprehensive and quantitative fashion, the number and identity of genes expressed throughout development. The resource will be comprehensive, quantitative, and publicly accessible, containing data on essentially all genes expressed throughout select stages of mouse development. Serial Analysis of Gene Expression (SAGE) is the gene expression methodology of choice for this work. Unlike expressed sequence tags (ESTs) and gene chip data, SAGE data are independent of prior gene discovery and are quantitative. Furthermore, SAGE data are digital, easily exchanged between laboratories for comparison and can be added to by scientists for years to come. Thus, this Atlas will include a data structure and data curation strategy that will facilitate the ongoing collection of gene expression data, even after the completion of this project. The Mouse Atlas project compromises 202 SAGE Libraries from 198 tissues. The list of libraries is available in a number of different groupings, including groups of libraries taken from specific tissue locations and libraries taken from specific developmental stages. Furthermore, this atlas will assemble gene expression profiles for a few focused experiments that will test hypotheses related to the techniques employed, tumor models and models of abnormal development. This will test the resource and provide quality control, validation and demonstrate applicability. Additionally, The Mammalian Organogenesis - Regulation by Gene Expression Networks (MORGEN) project will provide a complete, permanent, and accurate picture of mouse gene expression in the heart (atrioventricular canal and outflow tract), pancreas, and liver; new techniques to understand the interplay of proteins governing the expression of genes key to the development of these organ systems; and the identification of the master regulatory switches that control development of the tissues.

View all literature mentions

Crl:CD1(ICR) (tool)

RRID:IMSR_CRL:022

Mus musculus with name Crl:CD1(ICR) from IMSR.

View all literature mentions