Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II.

Nature | Oct 16, 2011

Heterochromatin comprises tightly compacted repetitive regions of eukaryotic chromosomes. The inheritance of heterochromatin through mitosis requires RNA interference (RNAi), which guides histone modification during the DNA replication phase of the cell cycle. Here we show that the alternating arrangement of origins of replication and non-coding RNA in pericentromeric heterochromatin results in competition between transcription and replication in Schizosaccharomyces pombe. Co-transcriptional RNAi releases RNA polymerase II (Pol II), allowing completion of DNA replication by the leading strand DNA polymerase, and associated histone modifying enzymes that spread heterochromatin with the replication fork. In the absence of RNAi, stalled forks are repaired by homologous recombination without histone modification.

Pubmed ID: 22002604 RIS Download

Mesh terms: Centromere | Chromosomal Proteins, Non-Histone | DNA Damage | DNA Replication | DNA-Directed DNA Polymerase | Gene Silencing | Heterochromatin | Histones | Homologous Recombination | Models, Genetic | Molecular Sequence Data | RNA Interference | RNA Polymerase II | RNA, Small Interfering | Replication Origin | S Phase | Schizosaccharomyces | Schizosaccharomyces pombe Proteins | Transcription, Genetic

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, Id: R01 GM076396
  • Agency: NIGMS NIH HHS, Id: R01 GM076396-04

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GenBank

NIH genetic sequence database that provides an annotated collection of all publicly available DNA sequences for almost 280 000 formally described species. (Jan 2014) These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. It is part of the International Nucleotide Sequence Database Collaboration and daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP.

tool

View all literature mentions

Gene Expression Omnibus

A public functional genomics data repository supporting MIAME-compliant data submissions. Tools are provided to help users query and download experiments and curated gene expression profiles. These data include microarray-based experiments measuring the abundance of mRNA, genomic DNA, and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. Array- and sequence-based data are accepted.

tool

View all literature mentions