Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Inhibition of β-catenin signaling by nongenomic action of orphan nuclear receptor Nur77.

Oncogene | 2012

Dysregulation of β-catenin turnover due to mutations of its regulatory proteins including adenomatous polyposis coli (APC) and p53 is implicated in the pathogenesis of cancer. Thus, intensive effort is being made to search for alternative approaches to reduce abnormally activated β-catenin in cancer cells. Nur77, an orphan member of the nuclear receptor superfamily, has a role in the growth and apoptosis of cancer cells. Here, we reported that Nur77 could inhibit transcriptional activity of β-catenin by inducing β-catenin degradation via proteasomal degradation pathway that is glycogen synthase kinase 3β and Siah-1 independent. Nur77 induction of β-catenin degradation required both the N-terminal region of Nur77, which was involved in Nur77 ubiquitination, and the C-terminal region, which was responsible for β-catenin binding. Nur77/ΔDBD, a Nur77 mutant lacking its DNA-binding domain, resided in the cytoplasm, interacted with β-catenin, and induced β-catenin degradation, demonstrating that Nur77-mediated β-catenin degradation was independent of its DNA binding and transactivation, and might occur in the cytoplasm. In addition, we reported our identification of two digitalis-like compounds (DLCs), H-9 and ATE-i2-b4, which potently induced Nur77 expression and β-catenin degradation in SW620 colon cancer cells expressing mutant APC protein in vitro and in animals. DLC-induced Nur77 protein was mainly found in the cytoplasm, and inhibition of Nur77 nuclear export by the CRM1-dependent nuclear export inhibitor leptomycin B or Jun N-terminal kinase inhibitor prevented the effect of DLC on inducing β-catenin degradation. Together, our results demonstrate that β-catenin can be degraded by cytoplasmic Nur77 through their interaction and identify H-9 and ATE-i2-b4 as potent activators of the Nur77-mediated pathway for β-catenin degradation.

Pubmed ID: 21986938 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: GM089927
  • Agency: NCI NIH HHS, United States
    Id: R01 CA140980
  • Agency: NCI NIH HHS, United States
    Id: CA140980
  • Agency: NCI NIH HHS, United States
    Id: R01 CA140980-01A1
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM089927
  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM089927-01A1

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


HCT 116 (tool)

RRID:CVCL_0291

Cell line HCT 116 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HCT 116 (tool)

RRID:CVCL_0291

Cell line HCT 116 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HeLa (tool)

RRID:CVCL_0030

Cell line HeLa is a Cancer cell line with a species of origin Homo sapiens

View all literature mentions

BALB/cAnNCrl (tool)

RRID:MGI:2683685

laboratory mouse with name BALB/cAnNCrl from MGI.

View all literature mentions