Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

HIF-1 and SKN-1 coordinate the transcriptional response to hydrogen sulfide in Caenorhabditis elegans.

PloS one | Oct 7, 2011

Hydrogen sulfide (H₂S) has dramatic physiological effects on animals that are associated with improved survival. C. elegans grown in H₂S are long-lived and thermotolerant. To identify mechanisms by which adaptation to H₂S effects physiological functions, we have measured transcriptional responses to H₂S exposure. Using microarray analysis we observe rapid changes in the abundance of specific mRNAs. The number and magnitude of transcriptional changes increased with the duration of H₂S exposure. Functional annotation suggests that genes associated with protein homeostasis are upregulated upon prolonged exposure to H₂S. Previous work has shown that the hypoxia-inducible transcription factor, HIF-1, is required for survival in H₂S. In fact, we show that hif-1 is required for most, if not all, early transcriptional changes in H₂S. Moreover, our data demonstrate that SKN-1, the C. elegans homologue of NRF2, also contributes to H₂S-dependent changes in transcription. We show that these results are functionally important, as skn-1 is essential to survive exposure to H₂S. Our results suggest a model in which HIF-1 and SKN-1 coordinate a broad transcriptional response to H₂S that culminates in a global reorganization of protein homeostasis networks.

Pubmed ID: 21980473 RIS Download

Mesh terms: Animals | Caenorhabditis elegans | Caenorhabditis elegans Proteins | DNA-Binding Proteins | Homeostasis | Hydrogen Sulfide | Molecular Sequence Annotation | RNA, Messenger | Time Factors | Transcription Factors | Transcription, Genetic

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


DAVID

An integrated biological knowledgebase and comprehensive set of functional annotation tools for investigators to understand biological meaning behind large lists of genes. For any given gene list, DAVID tools are able to: - Identify enriched biological themes, particularly GO terms - Discover enriched functional-related gene groups - Cluster redundant annotation terms - Visualize genes on BioCarta & KEGG pathway maps - Display related many-genes-to-many-terms on 2-D view. - Search for other functionally related genes not in the list - List interacting proteins - Explore gene names in batch - Link gene-disease associations - Highlight protein functional domains and motifs - Redirect to related literatures - Convert gene identifiers from one type to another.

tool

View all literature mentions

WormBase

A central data repository for nematode biology including the complete genomic sequence, gene predictions and orthology assignments from a range of related nematodes. Derived from the initial ACeDB database of C. elegans genetic and sequence information, WormBase includes the genomic, anatomical and functional information of C. elegans, other Caenorhabditis species and other nematodes. WormBase maintains a public FTP site where researchers can find many commonly requested files and datasets, the WormBase software and prepackaged databases.

tool

View all literature mentions

Primer3

Tool used to design PCR primers from DNA sequence - often in high-throughput genomics applications. It does everything from mispriming libraries to sequence quality data to the generation of internal oligos.

tool

View all literature mentions

Gene Expression Omnibus

A public functional genomics data repository supporting MIAME-compliant data submissions. Tools are provided to help users query and download experiments and curated gene expression profiles. These data include microarray-based experiments measuring the abundance of mRNA, genomic DNA, and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. Array- and sequence-based data are accepted.

tool

View all literature mentions