• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Regulation of the MEX-5 gradient by a spatially segregated kinase/phosphatase cycle.

Protein concentration gradients encode spatial information across cells and tissues and often depend on spatially localized protein synthesis. Here, we report that a different mechanism underlies the MEX-5 gradient. MEX-5 is an RNA-binding protein that becomes distributed in a cytoplasmic gradient along the anterior-to-posterior axis of the one-cell C. elegans embryo. We demonstrate that the MEX-5 gradient is a direct consequence of an underlying gradient in MEX-5 diffusivity. The MEX-5 diffusion gradient arises when the PAR-1 kinase stimulates the release of MEX-5 from slow-diffusive, RNA-containing complexes in the posterior cytoplasm. PAR-1 directly phosphorylates MEX-5 and is antagonized by the spatially uniform phosphatase PP2A. Mathematical modeling and in vivo observations demonstrate that spatially segregated phosphorylation and dephosphorylation reactions are sufficient to generate stable protein concentration gradients in the cytoplasm. The principles demonstrated here apply to any spatially segregated modification cycle that affects protein diffusion and do not require protein synthesis or degradation.

Pubmed ID: 21925318

Authors

  • Griffin EE
  • Odde DJ
  • Seydoux G

Journal

Cell

Publication Data

September 16, 2011

Associated Grants

  • Agency: NIGMS NIH HHS, Id: R01 GM071522
  • Agency: NIGMS NIH HHS, Id: R01 GM71522
  • Agency: NICHD NIH HHS, Id: R01 HD037047
  • Agency: NICHD NIH HHS, Id: R01 HD037047-13
  • Agency: NICHD NIH HHS, Id: R01HD37047
  • Agency: Howard Hughes Medical Institute, Id:

Mesh Terms

  • Animals
  • Caenorhabditis elegans
  • Caenorhabditis elegans Proteins
  • Cytoplasm
  • Diffusion
  • Phosphorylation
  • Protein Phosphatase 2
  • Protein-Serine-Threonine Kinases
  • RNA
  • RNA-Binding Proteins
  • Zygote