Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Postsynaptic density-95 scaffolding of Shaker-type K⁺ channels in smooth muscle cells regulates the diameter of cerebral arteries.

Postsynaptic density-95 (PSD95) is a 95 kDa scaffolding molecule in the brain that clusters postsynaptic proteins including ion channels, receptors, enzymes and other signalling partners required for normal cognition. The voltage-gated, Shaker-type K(+) (K(V)1) channel is one key binding partner of PSD95 scaffolds in neurons. However, K(V)1 channels composed of α1.2 and α1.5 pore-forming subunits also are expressed in the vascular smooth muscle cells (cVSMCs) of the cerebral circulation, although the identity of their molecular scaffolds is unknown. Since α1.2 contains a binding motif for PSD95, we explored the possibility that cVSMCs express PSD95 as a scaffold to promote K(V)1 channel expression and cerebral vasodilatation. Cerebral arteries from Sprague-Dawley rats were isolated for analysis of PSD95 and K(V)1 channel proteins. PSD95 was detected in cVSMCs and it co-immunoprecipitated and co-localized with the pore-forming α1.2 subunit of the K(V)1 channel. Antisense-mediated knockdown of PSD95 profoundly reduced K(V)1 channel expression and suppressed K(V)1 current in patch-clamped cVSMCs. Loss of PSD95 also depolarized cVSMCs in pressurized cerebral arteries and induced a strong constriction associated with a loss of functional K(V)1 channels. Our findings provide initial evidence that PSD95 is expressed in cVSMCs, and the K(V)1 channel is one of its important binding partners. PSD95 appears to function as a critical 'dilator' scaffold in cerebral arteries by increasing the number of functional K(V)1 channels at the plasma membrane.

Pubmed ID: 21911612 RIS Download

Mesh terms: Animals | Blotting, Western | Cerebral Arteries | Furocoumarins | Gene Knockdown Techniques | Intracellular Signaling Peptides and Proteins | Male | Membrane Potentials | Membrane Proteins | Myocytes, Smooth Muscle | Oligonucleotides, Antisense | Patch-Clamp Techniques | Post-Synaptic Density | Potassium Channel Blockers | Rats | Rats, Sprague-Dawley | Real-Time Polymerase Chain Reaction | Shaker Superfamily of Potassium Channels | Spider Venoms | Vasodilation

Research tools detected in this publication

Data used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, Id: F32 HL095284
  • Agency: NHLBI NIH HHS, Id: R01 HL059238
  • Agency: NHLBI NIH HHS, Id: R01 HL097107

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NeuroMab

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

tool

View all literature mentions

Scion Image

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. Commercial software vendor.

tool

View all literature mentions

pClamp

Software suite for electrophysiology data acquisition and analysis by Molecular Devices. Used for the control and recording of voltage clamp, current clamp, and patch clamp experiments. The software suite consists of Clampex 11 Software for data acquisition, AxoScope 11 Software for background recording, Clampfit 11 Software for data analysis, and optional Clampfit Advanced Analysis Module for sophisticated and streamlined analysis.

tool

View all literature mentions