We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Dynamics of the putative RNA helicase Spb4 during ribosome assembly in Saccharomyces cerevisiae.

Spb4 is a putative ATP-dependent RNA helicase that is required for proper processing of 27SB pre-rRNAs and therefore for 60S ribosomal subunit biogenesis. To define the timing of association of this protein with preribosomal particles, we have studied the composition of complexes that copurify with Spb4 tagged by tandem affinity purification (TAP-tagged Spb4). These complexes contain mainly the 27SB pre-rRNAs and about 50 ribosome biogenesis proteins, primarily components of early pre-60S ribosomal particles. To a lesser extent, some protein factors of 90S preribosomal particles and the 35S and 27SA pre-rRNAs also copurify with TAP-tagged Spb4. Moreover, we have obtained by site-directed mutagenesis an allele that results in the R360A substitution in the conserved motif VI of the Spb4 helicase domain. This allele causes a dominant-negative phenotype when overexpressed in the wild-type strain. Cells expressing Spb4(R360A) display an accumulation of 35S and 27SB pre-rRNAs and a net 40S ribosomal subunit defect. TAP-tagged Spb4(R360A) displays a greater steady-state association with 90S preribosomal particles than TAP-tagged wild-type Spb4. Together, our data indicate that Spb4 is a component of early nucle(ol)ar pre-60S ribosomal particles containing 27SB pre-rRNA. Apparently, Spb4 binds 90S preribosomal particles and dissociates from pre-60S ribosomal particles after processing of 27SB pre-rRNA.

Pubmed ID: 21825077 RIS Download

Mesh terms: DEAD-box RNA Helicases | Mutagenesis, Site-Directed | Mutation | Protein Binding | RNA Precursors | RNA, Fungal | Ribosomal Proteins | Ribosomes | Saccharomyces cerevisiae | Saccharomyces cerevisiae Proteins

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

Associated grants


BioGRID (Data, Interactions)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.