Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Sirt1 deacetylates c-Myc and promotes c-Myc/Max association.

The international journal of biochemistry & cell biology | 2011

The c-Myc oncoprotein plays critical roles in multiple biological processes by controlling cell proliferation, apoptosis, differentiation, and metabolism. Especially, c-Myc is frequently overexpressed in many human cancers and widely involved in tumorigenesis. However, how the post-translational modifications, especially acetylation of c-Myc, contribute to its activity in the leukemia cells remains largely unknown. Sirt1, a NAD-dependent class III histone deacetylase, has a paradoxical role in tumorigenesis by deacetylating several transcription factors, including p53, E2F1 and forkhead proteins. In this study, we show that Sirt1 interacts physically with the C-terminus of c-Myc and deacetylates c-Myc both in vitro and in vivo. Moreover, the deacetylation of c-Myc by Sirt1 promotes its association with Max, a partner essential for its activation, thereby facilitating c-Myc transactivation activity on hTERT promoter. Finally, inhibition of endogenous Sirt1 in K562 cells by either RNAi or its inhibitor NAM causes the overall decrease of c-Myc target genes expression, including hTERT, cyclinD2 and LDHA, which further suppress cell proliferation and arrest cell cycle at G1/S phase. Thus, our results demonstrate the positive effect of Sirt1 on c-Myc activity by efficiently enhancing c-Myc/Max association in human leukemia cell line K562, suggesting a potential role of Sirt1 in tumorigenesis.

Pubmed ID: 21807113 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Picard (tool)

RRID:SCR_006525

Java toolset for working with next generation sequencing data in the BAM format.

View all literature mentions