Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cellular and viral factors regulating Merkel cell polyomavirus replication.

PloS one | 2011

Merkel cell polyomavirus (MCV), a previously unrecognized component of the human viral skin flora, was discovered as a mutated and clonally-integrated virus inserted into Merkel cell carcinoma (MCC) genomes. We reconstructed a replicating MCV clone (MCV-HF), and then mutated viral sites required for replication or interaction with cellular proteins to examine replication efficiency and viral gene expression. Three days after MCV-HF transfection into 293 cells, although replication is not robust, encapsidated viral DNA and protein can be readily isolated by density gradient centrifugation and typical ∼40 nm diameter polyomavirus virions are identified by electron microscopy. The virus has an orderly gene expression cascade during replication in which large T (LT) and 57kT proteins are first expressed by day 2, followed by expression of small T (sT) and VP1 proteins. VP1 and sT proteins are not detected, and spliced 57kT is markedly diminished, in the replication-defective virus suggesting that early gene splicing and late gene transcription may be dependent on viral DNA replication. MCV replication and encapsidation is increased by overexpression of MCV sT, consistent with sT being a limiting factor during virus replication. Mutation of the MCV LT vacuolar sorting protein hVam6p (Vps39) binding site also enhances MCV replication while exogenous hVam6p overexpression reduces MCV virion production by >90%. Although MCV-HF generates encapsidated wild-type MCV virions, we did not find conditions for persistent transmission to recipient cell lines suggesting that MCV has a highly restricted tropism. These studies identify and highlight the role of polyomavirus DNA replication in viral gene expression and show that viral sT and cellular hVam6p are important factors regulating MCV replication. MCV-HF is a molecular clone that can be readily manipulated to investigate factors affecting MCV replication.

Pubmed ID: 21799863 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: AI078926
  • Agency: NCI NIH HHS, United States
    Id: R01 CA136363
  • Agency: NCI NIH HHS, United States
    Id: R33 CA120726
  • Agency: NCI NIH HHS, United States
    Id: CA136363
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI078926
  • Agency: NCI NIH HHS, United States
    Id: CA120726

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MacVector (tool)

RRID:SCR_015700

Software application that provides sequence editing, primer design, internet database searching, protein analysis, sequence confirmation, multiple sequence alignment, phylogenetic reconstruction, coding region analysis, agarose gel simulation and a variety of other functions.

View all literature mentions

NIH 3T3 (tool)

RRID:CVCL_0594

Cell line NIH 3T3 is a Spontaneously immortalized cell line with a species of origin Mus musculus

View all literature mentions

A-549 (tool)

RRID:CVCL_0023

Cell line A-549 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

COS-7 (tool)

RRID:CVCL_0224

Cell line COS-7 is a Transformed cell line with a species of origin Chlorocebus aethiops (Green monkey)

View all literature mentions

BJAB (tool)

RRID:CVCL_5711

Cell line BJAB is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293-FT (tool)

RRID:CVCL_6911

Cell line HEK293-FT is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions