• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans.

The axons of C. elegans left and right AWC olfactory neurons communicate at synapses through a calcium-signaling complex to regulate stochastic asymmetric cell identities called AWC(ON) and AWC(OFF). However, it is not known how the calcium-signaling complex, which consists of UNC-43/CaMKII, TIR-1/SARM adaptor protein and NSY-1/ASK1 MAPKKK, is localized to postsynaptic sites in the AWC axons for this lateral interaction. Here, we show that microtubule-based localization of the TIR-1 signaling complex to the synapses regulates AWC asymmetry. Similar to unc-43, tir-1 and nsy-1 loss-of-function mutants, specific disruption of microtubules in AWC by nocodazole generates two AWC(ON) neurons. Reduced localization of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons strongly correlates with the 2AWC(ON) phenotype in nocodazole-treated animals. We identified kinesin motor unc-104/kif1a mutants for enhancement of the 2AWC(ON) phenotype of a hypomorphic tir-1 mutant. Mutations in unc-104, like microtubule depolymerization, lead to a reduced level of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons. In addition, dynamic transport of TIR-1 in the AWC axons is dependent on unc-104, the primary motor required for the transport of presynaptic vesicles. Furthermore, unc-104 acts non-cell autonomously in the AWC(ON) neuron to regulate the AWC(OFF) identity. Together, these results suggest a model in which UNC-104 may transport some unknown presynaptic factor(s) in the future AWC(ON) cell that non-cell autonomously control the trafficking of the TIR-1 signaling complex to postsynaptic regions of the AWC axons to regulate the AWC(OFF) identity.

Pubmed ID: 21771813